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Long-standing problems associated with long-ranged electrostatic
interactions have plagued theory and simulation alike. Traditional
lattice sum (Ewald-like) treatments of Coulomb interactions add
significant overhead to computer simulations and can produce
artifacts from spurious interactions between simulation cell images.
These subtle issues become particularly apparent when estimating
thermodynamic quantities, such as free energies of solvation in
charged and polar systems, to which long-ranged Coulomb interac-
tions typically make a large contribution. In this paper, we develop a
framework for determining very accurate solvation free energies of
systems with long-ranged interactions from models that interact
with purely short-ranged potentials. Our approach is generally appli-
cable and can be combinedwith existing computational and theoretical
techniques for estimating solvation thermodynamics. We demonstrate
the utility of our approach by examining the hydration thermo-
dynamics of hydrophobic and ionic solutes and the solvation of a
large, highly charged colloid that exhibits overcharging, a complex
nonlinear electrostatic phenomenon whereby counterions from
the solvent effectively overscreen and locally invert the integrated
charge of the solvated object.

mean field theory | free energy calculations | density functional theory |
hydrophobicity | solvation

Solvation thermodynamics underlies a vast array of important
processes, ranging from protein folding (1, 2) and ligand

binding (3) to self-assembly at interfaces (4). Thus, understanding
solvation, and driving forces rooted in solvation, has been a focus
of chemistry and physics for over a century (5, 6).
Quantitatively successful theories of self-solvation and sol-

vophobic solvation in simple fluids have been developed (7–16).
However, a generally useful analytic approach for solvation in
complex charged and polar environments is lacking, and solva-
tion is typically studied with computer simulations. Contributions
from the long-ranged components of Coulomb interactions in
periodic images of the simulation cell are typically evaluated
using computationally intense Ewald and related lattice sum-
mation techniques (17). These methods generate distorted, sys-
tem size-dependent interaction potentials (18) and do not scale
well in massively parallel simulations (19), adding considerable
computational overhead. Moreover, artifacts can arise from spuri-
ous interactions between the periodic images of solutes, as ob-
served for proteins in water (20).
The local molecular field (LMF) theory of nonuniform fluids

is a promising avenue for substantially improving free energy
calculations by removing many of the computational and con-
ceptual burdens associated with long-ranged interactions (14,
21). LMF theory prescribes a way to accurately determine the
structure of a full system with long-ranged intermolecular interac-
tions in a general single particle field by studying a simpler mimic
system wherein particles interact with short-ranged intermolecular
interactions only. An effective field in the mimic system accounts
for the averaged effects of the long-ranged “far-field” interactions
in the full system.

This approach is especially powerful for studying solvation in
charged and polar solvents, where in the simplest case the ef-
fective field can represent the interactions between a fixed solute
and the solvent. In this paper, we show that when the effective
field and induced density around the solute are accurately de-
termined by LMF theory it is very easy to integrate over the
solvent structure and accurately compute the far-field contributions
to the solvation free energy as well, using quantities determined
solely in the short-ranged mimic system, where simulations scale
linearly with system size.
LMF theory presents a general conceptual framework that

gives qualitative as well as quantitative insight into many other
problems. Its treatment of long- and short-ranged forces makes
suggestive connections to other well-established theoretical meth-
ods, such as perturbation theory for uniform simple fluids (6, 7),
classical density functional theory (DFT) of nonuniform fluids (11),
and the successful quasichemical approach for solvation (16).
Although our focus in this paper is on the quantitative deter-
mination of the solvation free energy, many of these connections
will be touched upon in our discussion here and in Supporting
Information. The treatment of solvation free energies we present
here can be readily generalized to determine more complex free
energies, including alchemical transformations and potentials of
mean force (3), and extended to more general charged and polar
mixtures (21) with mobile solutes.
The conceptual development of the LMF approach to solvation

thermodynamics is introduced in the next section, with derivations
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and other technical details given inMaterials and Methods,Derivation
of the Far-Field Solvation Free Energy and Supporting Information. We
first focus on the solvophobic solvation of a repulsive, spherical
solute in a Lennard-Jones (LJ) fluid, where most of the ideas can be
understood in their simplest form and the basic physics is well un-
derstood. We then turn to more challenging and experimentally
relevant problems involving the length-scale transition in hydro-
phobic solvation of an apolar solute in water and its effect on the
solvation free energies; the hydration of single ions is discussed in
Supporting Information. Finally we discuss the solvation and “over-
charging” of a large, highly charged colloid in an ionic fluid, a highly
nontrivial process involving ion correlations (22) that is completely
missed in classic mean field treatments of ionic solutions (23).

LMF Theory and Truncated Models
For simplicity, we first study solvation in a one-component LJ
fluid with pairwise intermolecular interactions. We assume that
the intermolecular interactions in the full solvent system are
slowly varying at large separations, as is true for both LJ and
Coulomb interactions. In the simplest description of solvation
using the Grand ensemble, the solvent interacts with an external
field ϕðrÞ from a fixed solute. This induces a nonuniform density
ρðrÞ that far from the solute or when ϕ→ 0 reduces to the known
bulk density ρB associated with a chemical potential μ.
In a general perturbation approach (6, 7), the intermolecular

interactions of both solute and solvent are usually divided into
strong short-ranged reference and slowly varying long-ranged
perturbation parts (14):

uðrÞ= u0ðrÞ+ u1ðrÞ, [1]

ϕðrÞ=ϕ0ðrÞ+ϕ1ðrÞ. [2]

The simplest “strong coupling” (SC) reference system, denoted
by a subscript 0, ignores all effects of the long-ranged u1ðrÞ and
has short-ranged pair interactions u0ðrÞ along with a similarly
chosen short-ranged solute–solvent field ϕ0ðrÞ (21). In general
the induced density ρ0ðrÞ in the SC reference system will differ
from the ρðrÞ of the full system but the chemical potential μ0 is
chosen so that the density again approaches ρB far from the solute.
LMF theory considers a special reference system or “mimic

system,” denoted by the subscript R, resulting from a judicious
choice of the short- and long-ranged components of uðrÞ along
with an effective or renormalized solute field ϕRðrÞ, chosen in
principle such that the induced density in the mimic system
equals that of the full system:

ρRðr;
�
ϕR
�Þ= ρðr;½ϕ�Þ. [3]

Here we have explicitly indicated the functional dependence of
the densities on their respective fields. This dependence will be
omitted in what follows unless needed for clarity.
As discussed in detail in ref. 21 and further in Supporting In-

formation, extensive previous work has shown that ϕRðrÞ and
ρRðrÞ can often be very accurately determined by solving the
LMF equation,

ϕRðrÞ=ϕðrÞ+
Z

dr′
�
ρRðr′Þ− ρB

�
u1ðjr− r′jÞ. [4]

Here constants have been chosen so that ϕR vanishes in the bulk
or when ϕ is zero. This equation also holds in other ensembles
such as the constant-pressure ensemble where the density exactly
approaches ρB far from the solute.
The LMF equation has a functional form suggested by a

simple mean field approximation where the averaged effects of
the long-ranged intermolecular pair interactions are self-consistently

related to the density induced by a single particle mean field.
However, this form is derived by an approximate integration over
intermolecular forces in the full and mimic systems as described
by the exact Yvon–Born–Green (YBG) hierarchy of equations
(14, 21) and does not use the traditional mean field ansatz where
pair distribution functions are approximated by products of sin-
gle particle functions. The detailed analysis in ref. 21 and Sup-
porting Information shows that quantitatively accurate results
from the LMF equation can be expected only when the u1ðrÞ
component averaged over is uniformly slowly varying, as illus-
trated in the Weeks–Chandler–Andersen (WCA) separation of
the LJ potential (7, 14). This requirement will be especially im-
portant in the derivation of the solvation free energy, as dis-
cussed in the next section.
LMF theory can be immediately adapted to models of charged

and polar systems with pairwise Coulomb interactions (21). Ex-
perience has shown that it is advantageous to separate the Cou-
lomb interaction from all charges into short- and long-ranged
parts according to

1
r
≡ vðrÞ= erfcðr=σÞ

r
+
erfðr=σÞ

r
≡ v0ðrÞ+ v1ðrÞ, [5]

where erfðrÞ and erfcðrÞ= 1− erfðrÞ are the usual error and com-
plementary error functions. v1ðrÞ is the electrostatic potential
(given by a convolution with 1=r) arising from a unit Gaussian
charge distribution

ρGðrÞ=
1

π3=2σ3
exp

 
−
r2

σ2

!
. [6]

For accurate results from LMF theory the smoothing length σ
should generally be chosen on the order of typical nearest-neigh-
bor distances. The Coulomb LMF equation analogous to Eq. 4
can be written as (21)

VRðrÞ=VðrÞ+
Z

dr′ρqRðr′Þv1ðjr− r′jÞ [7]

=VðrÞ+
Z

dr′  ρqσR ðr′Þ · 1
jr− r′j. [8]

Here VðrÞ is the bare electrostatic potential from the solute and
ρqRðrÞ is the equilibrium charge density of the mobile solvent
where ρqB = 0. In Eq. 8 we have used the convolution form of v1
to rewrite the renormalized potential in terms of the Gaussian
smoothed charged density ρqσR , the convolution of ρqRðrÞ with ρG.
As shown below, ρqσR plays a fundamental role in solvation pro-
cesses in charged and polar systems (21). Hu (24) has shown that
a similar Gaussian smoothing of the instantaneous charge den-
sity in each configuration permits the efficient determination of
certain dynamical properties in cases of high symmetry.

LMF Thermodynamic Cycle for Solvation
We first consider the solvation of a rigid solute (S) fixed at the
origin in a mobile single-component LJ-type solvent (M). Fig. 1
schematically depicts the process of gradually “turning on” the
solute–solvent interaction potential ϕðrÞ. This is harshly re-
pulsive at short distances where molecular cores between the
solute and solvent will overlap, and more generally may also
contain other strong short-ranged forces describing hydrogen
bonding and other local interactions as well as long-ranged in-
teractions. We want to determine the solvation free energy
Ω̆ ½ϕ�≡Ω½ϕ�−Ω½ϕ= 0�, the difference in the Grand free energy
between the full solvent–solute system and the pure solvent in
zero solute field.
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The lower left panel of Fig. 1 shows the core positions of the
mobile bulk solvent (M) in a typical configuration. The solvent
molecules interact with the full long-ranged pair potential u. The
lower right panel schematically depicts an equilibrium configu-
ration of the full solute–solvent system, where the solute (S) has
been inserted into the fluid.
However, the transformation from a noninteracting point

solute on the left into the full solute on the right must generally
be carried out in small steps using a series of nonphysical in-
termediate states as the harshly repulsive solute–solvent core
interactions are gradually turned on (3). Moreover, each step of
this process requires an accurate treatment of the long-ranged
interactions, which for Coulomb interactions adds significant
overhead to each time step. We indicate this general difficulty by
using a red arrow to connect the two lower panels of Fig. 1.
The LMF treatment of solvation in Fig. 1 introduces a ther-

modynamic cycle involving a short-ranged mimic system that elim-
inates most of the problems arising from conventional treatments of
long-ranged forces. Moreover, it provides a natural and physically
suggestive way of partitioning the free energy into short and long-
ranged components that are conceptually related to elements of the
quasichemical theory of solvation (16, 25). These connections will
be discussed in detail in a future publication; here we focus on the
important far-field contribution to the solvation free energy, which
plays a fundamental role in all partitioning schemes.
The LMF thermodynamic cycle includes the two upper panels

of Fig. 1, which describe solvation in the short-ranged mimic
system. The upper left panel illustrates a configuration of the
strong coupling or mimic solvent (M0); the red color indicates
truncated solvent–solvent interactions, u0ðrÞ. The slowly varying,
long-ranged components of the intermolecular forces tend to
cancel in a uniform fluid (6, 7) so the particle arrangements are
similar in the bulk M and M0 panels.
Solvation in the mimic system involves insertion of a mimic

solute (SR), described by the renormalized potential

ϕRðrÞ≡ϕ0ðrÞ+ϕR1ðrÞ. [9]

The slowly varying component ϕR1ðrÞ is given by the sum of the
slowly varying ϕ1ðrÞ part of the solute–solvent interaction in Eq. 2
and the last term on the right in the LMF Eq. 4. This latter term is
also slowly varying because of the integration over u1. As prescribed
by LMF theory, ϕRðrÞ is chosen so that the induced density around
the mimic solute in the right M0 + SR panel is very similar to that
around the full solute in the M + S panel, as indicated in Fig. 1.

We exploit this fact in determining the far-field component of
the solvation free energy: the free energy change between the
lower and upper panels on the left and right sides of Fig. 1, in-
dicated by the vertical green arrows. By a “bottom-up” functional
integration over the effective field and induced density as con-
nected by the LMF equation and paying close attention to
constant terms, we derive in Materials and Methods, Derivation of
the Far-Field Solvation Free Energy a simple, analytic expression
for the far-field component of the solvation free energy

ΔΩLMF½ϕR�≡ Ω̆ ½ϕ�− Ω̆R½ϕR� [10]

=−
1
2

Z
dr  ½ρðrÞ+ ρB�½ϕRðrÞ−ϕðrÞ�. [11]

Eq. 11 is our main result. It can be immediately generalized as in
Eq. 7 for charged and polar systems as

ΔΩLMF½VR�=−
1
2

Z
drρqRðrÞ½VRðrÞ−VðrÞ� [12]

and extended to describe free energies as a function of a general
order parameter, suggesting that this LMF-based framework is
widely applicable.
The validity of Eq. 11 relies on the mean field form and

accuracy of the LMF Eq. 4, which can generally be justified
only for particular slowly varying choices of the u1 term. This
important constraint is completely missed in conventional “top-
down” DFT approaches where a crude and uncontrolled mean
field product approximation is usually imposed directly on pair
correlations in the free energy functional itself. See Materials and
Methods, Derivation of the Far-Field Solvation Free Energy and
Supporting Information for further discussion of this important
conceptual point.
To complete the cycle we must calculate the solvation free

energy in the short-ranged mimic system, Ω̆R. It can be de-
termined using standard methods where the ϕRðrÞ interaction is
gradually turned on. Because ϕRðrÞ contains all of the strong
short-ranged interactions ϕ0ðrÞ, this process is inherently diffi-
cult and typically would require just as many intermediate steps
as the analogous solvation process in the full system. However,
each step can be carried out much more efficiently in the ab-
sence of long-ranged interactions. This major simplification is
suggested by green stripes on the arrow connecting the upper
panels in Fig. 1 and contrasts with the red arrow connecting the
lower panels.
Moreover, Eq. 9 allows us to write Ω̆R as the sum of Ω̆0½ϕ0�,

the solvation free energy in the short-ranged SC system with
the known field ϕ0ðrÞ, and the additional free energy, ΔΩR1, of
turning on the more slowly varying ϕR1ðrÞ. The latter can often
be determined in a numerically practical and computationally
efficient way that requires no simulations of the mimic system
by using linear response theory to reweight configurations in
the SC system, as shown in ref. 26. When linear response
is accurate it can be numerically useful to remove cancel-
ling terms by combining ΔΩR1 with ΔΩLMF, as discussed in
Supporting Information.

Length Scale Dependence of Solvophobic Solvation
The crux of the LMF treatment of solvation is that accurate
thermodynamic properties follow immediately from a good de-
scription of the induced solvent structure. To illustrate this point,
we first show that LMF theory can quantitatively capture the
drying in an LJ fluid observed at the surface of a harshly re-
pulsive solute with an effective hard sphere diameter RHS ≈ 2σLJ,
as defined in ref. 27.

Fig. 1. LMF theory-based thermodynamic cycle for solvation. The bottom leg
of the cycle corresponds to inserting a solute (S) into a mobile solvent (M), both
of which have short- and long-ranged interactions. This solvation process results
in a free energy change Ω̆. The top leg of the cycle depicts the insertion of a
renormalized solute (SR) into a short-ranged mobile solvent (M0), and the sol-
vation free energy in this mimic system is Ω̆ . The sum of the free energies of the
paths depicted by green arrows is ΔΩLMF = Ω̆ − Ω̆R, as described in the text.
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As illustrated in Fig. 2A, the WCA solvent strongly wets the
solute surface at large RHS ≈ 2σLJ. Nevertheless, drying can be
obtained with a WCA solvent by using LMF theory to account for
the averaged effects of unbalanced LJ forces at the fluid–solute
interface. The renormalized solute potential ϕRðrÞ, is compared
with the bare potential ϕðrÞ in Fig. 2A, Inset. The field ϕRðrÞ
provides an effective “push” on solvent particles near the in-
terface, such that the density in the mimic system is nearly iden-
tical to that in the full LJ system.
Given this accurate description of structure from LMF theory,

we now study the solvation thermodynamics of harshly repulsive
spherical solutes of various sizes in LJ and WCA fluids. Detailed
simulation results are shown in Fig. 2B. The Gibbs free energies
of solvation, G

^
, for the repulsive solutes in the WCA system scale

with solute volume for all sizes, whereas solvation in the full LJ
system displays a cross-over from scaling with solute volume to
solute surface area at RHS ≈ σLJ, consistent with the appearance
of interfacial drying (13, 14, 27, 28). The LMF prediction from
Eq. 11 is then used to obtain the far-field correction to the WCA
solvation free energies. The LMF free energies recover the
length-scale transition and reproduce the LJ solvation free en-
ergies with quantitative accuracy.
The computational utility of LMF theory becomes more appar-

ent in systems with costly long-ranged electrostatic interactions. We
first illustrate this by studying hydrophobic solvation of repulsive
spheres in water, in complete analogy to solvophobic solvation in LJ
fluids. In the short-ranged SC reference system, extended simple
point charge (SPC/E) water is modeled in a Gaussian-truncated
(GT) fashion, wherein the 1=r portion of the Coulomb potential is
replaced by the short-ranged v0ðrÞ. The smoothing length σ = 4.5 Å
is chosen such that v0ðrÞ captures the strong, local interactions
leading to H-bonding, so that the resulting GT water model accu-
rately reproduces the molecular structure and local properties of
the H-bond network of bulk water (27, 28). Because the H-bond
network of water is maintained around small solutes (27–29), GT
water also provides a very good description of solvation free ener-
gies in the small solute regime (27) (Fig. 3D).
Drying at the surface of a large repulsive sphere associated

with breaking local hydrogen bonds should also be qualitatively
captured by GT water, as shown in Fig. 3A. However, small
differences in the nonuniform water density ρðrÞ can be seen.
These arise because the long-ranged electrostatics generates
subtle long wavelength perturbations of the local hydrogen bond
network around the solute to produce dielectric screening and
related effects (30–32).
These differences are most clearly seen in the Gaussian smoothed

charge density, ρqσðrÞ, appearing in the LMF Eq. 8. Smoothed
charge densities for GT and full water are shown in Fig. 3B. Water is
polarized at the solute interface even in the full system, evidenced
by the positive lobe in ρqσðrÞ at small r. This buildup of

polarization is effectively screened, consistent with the sub-
sequent negative peak and ρqσðrÞ→ 0 for large r. In GT water,
however, only local hydrogen bonding constraints are optimized
and a much larger positive peak at small r is observed, indicating
overpolarization at the solute surface. Moreover, this peak is
largely unscreened; only a small peak develops at large r, and
ρqσðrÞ does not reach zero until the end of the (neutral)
simulation box.
The picture provided by ρqσðrÞ is complemented by examining

the orientational structure of hydration shell water in atomistic
detail. The probability distribution, PðθOHÞ, of the angle, θOH,
made by the O–H bond of water and the distance vector connecting
the water oxygen and the solute center, shown in Fig. 3C, further
illustrates that long-ranged electrostatics—mainly dipole-dipole
interactions in the case of water—significantly influences the po-
larization of interfacial water. GT water overorients its O–H bonds
toward the solute with respect to the full water model, because the
drive to form a dangling O–H bond at a nonpolar interface arises
from local, short-ranged interactions (9, 27). The dipolar screening
in full water reduces this tendency to form dangling bonds.
We can now integrate over structure and obtain the LMF

contribution to the solvation free energy as in Eq. 12. Owing to
the similar local structure of the full and GT water systems, ac-
curate estimates of ρqRðrÞ, and therefore VR1ðrÞ, can be obtained
from simulations in the GT system alone by using the linear
response theory formalism of Hu and Weeks (26); in fact, this
simplification holds for almost all charged and polar systems we
have examined (see Supporting Information for more details).
The electrostatic LMF correction determined in this manner
brings the hydration free energies into quantitative agreement
with those of the full system, as shown in Fig. 3D.

BA

Fig. 2. (A) Nonuniform density around a repulsive sphere of radius RHS ≈ 2σLJ
in an LJ fluid and in its corresponding WCA reference system and LMF theory
mimic system. (Inset) The bare and renormalized solute fields, ϕðrÞ and ϕRðrÞ,
respectively. (B) Solvation free energies as a function of solute radius in LJ and
WCA fluids scaled by the solute surface area, ~G=G

^
=4πR2

HS.

A B

C D

Fig. 3. (A) The nonuniform density ρðrÞ and (B) the Gaussian smoothed
charge density ρqσðrÞ of water around a harshly repulsive solute with an
effective hard sphere diameter of RHS ≈12 Å for the full SPC/E, GT, and LMF
theory mimic systems. Note that the Gaussian smoothing results in nonzero
ρqσðrÞ inside the solute core. (C) The probability distribution, PðθOHÞ, of the
angle made by water O–H bonds and the water–solute distance vector for
the same systems. The shaded region serves to highlight the deviation of the
GT system from the full results. (D) Solvation free energies scaled by the
solute surface area, ~G=G

^
=4πR2

HS, obtained in the full, GT, and LMF systems.
(Inset) The behavior of the free energies at large RHS. LMF corrections are on
the order of 10 kBT at RHS = 12 Å.
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Solvation and Overcharging in Colloidal Systems
We now turn to a case where long-ranged electrostatic interac-
tions play a major role in determining both the structure and
thermodynamics of the system, solvation of a charged colloid in
an ionic fluid. Large, highly charged colloidal particles can
seemingly invert their charge when immersed in solutions of
multivalent counterions (23). Multivalent counterions adsorb to
the surface of the colloid at densities high enough that the net
charge contained inside the first solvation shell is opposite to
that of the colloid. This phenomenon, known as overcharging, is
highly nontrivial (22) and cannot be captured by classic mean
field theories of ionic solutions (23).
Here we consider the solvation of a large (RC = 30 Å), highly

charged (QC =−110e0) colloid in a system of trivalent counter-
ions and monovalent coions in implicit water with a uniform
dielectric constant « as modeled in ref. 33. The charge is uniformly
smeared over the colloid surface, and the colloid and counter-
ions are modeled as charged WCA species (7). The SC system
is constructed with a smoothing length of σ = 2.5a= 26.828 Å,
where a is the nearest-neighbor distance defined setting
4πa3ðρ+ + ρ−Þ=3 equal to unity and ρ± is the density of counter
(+) or co(−) ions.
As a measure of the solvation structure, we monitor the in-

tegrated charge,

QðrÞ=QC +
Z r

0
dr′4πr′2ρqðr′Þ, [13]

shown in Fig. 4A. This quantity describes how the solute charge
is screened by the solvent charges. We find overcharging of the

colloid by the ionic solvent, with a maximum inverted charge of
0.15QC ≈ 16.5e0 near the solute surface.
Overcharging in the SC system is substantially less than that in

the full system, indicating that long-ranged electrostatics plays an
important role in determining the colloid solvation structure.
Additionally, the SC system does not capture the local neutrality
of the system, because its QðrÞ reaches zero only when integrating
over the entire box. In contrast, the full systemQðrÞ approaches zero
at a distance about twice the radius of the colloid, indicating that the
solute charge is completely screened over this length scale. The LMF
potential provides the renormalized force necessary to quantitatively
describe the amount of overcharging and the screening length in this
complex system, as evidenced by the QðrÞ in Fig. 4A.
These large corrections to the SC system suggest that long-

ranged interactions will make a significant contribution to the col-
loidal solvation free energy βG

^
≡ βG

^

R + βΔGLMF as well. Indeed,
the far-field LMF term, βΔGLMF =−1,049, whereas βG

^

R =−244.
The LMF result βG

^
=−1,293 is in very good agreement with that

determined using conventional techniques (33), βG
^

Ewald =−1,294.
We also obtained the free energy of charging the colloid to

intermediate charges (Q) between 0 and QC. This G
^ðQÞ scales

quadratically with Q to a good approximation, as shown in Fig.
4B, Inset. The charge dependence is dominated by the LMF
contribution, which itself is quadratic in Q.
The quadratic dependence of ΔGLMF on Q can be rationalized

by noting that the long-ranged electrostatic behavior is very in-
sensitive to many atomic-scale details because of Gaussian
smoothing. Accurate approximations to the potential VRðrÞ may
then be obtained by using simple approximations for the solvent
charge density that satisfy the exact long wavelength Stillinger–
Lovett moment conditions (34), like those obtained from Debye–
Hückel theory, ρqDðrÞ=QfDðrÞ (35). As shown in Supporting In-
formation, this approximation yields

ΔGLMF ≈−
Q2

2

Z
dr
Z

dr′fDðrÞfDðr′Þv1ðjr− r′jÞ [14]

∼ −
Q2

eσ
ffiffiffi
π

p . [15]

Eq. 14 captures the behavior of ΔGLMF with surprising accuracy,
even though classic mean field theories using the Debye charge
density are unable to produce overcharging (23). The simple Eq. 15
is equivalent to the self-interaction term of ref. 36 and highlights
the quadratic dependence of ΔGLMF on Q and its inverse depen-
dence on σ. Although it is very accurate in many cases involving
small ionic solutes (36), we find it to be only qualitatively accurate
for this highly charged system.
The use of simple theoretical constructs in Eq. 14 that capture

only a few long wavelength properties illustrates how LMF
theory can be used in combination with existing frameworks to
obtain both qualitative insight and accurate predictions.

Conclusions and Outlook
In this paper we have shown that LMF theory quantitatively
describes both the structure and thermodynamics of solvation
in general molecular systems using only short-ranged models.
Moreover, this enables the study of nonneutral systems, as illus-
trated in Supporting Information, by the estimation of an ion hy-
dration free energy. We expect our approach to be of significant
importance to the study of large biomolecular and materials sys-
tems, where poor scaling of lattice summation techniques (19)
limits the length and time scales accessible to simulations [the
most efficient particle-mesh algorithms for lattice summations
scale like N logN with a large prefactor, where N is the number of
particles in the system (17)]. Models with only short-ranged in-
teractions scale linearly with system size, so the use of LMF theory

A

B

Fig. 4. (A) The integrated charge per unit colloid charge as a function of
distance from the center of the colloid. (B) The LMF theory contribution to
the solvation free energy as a function of the colloid charge. Data points
indicate simulation results, the dashed line corresponds to a numerical in-
tegration of Eq. 14, and the solid line corresponds to the prediction of Eq. 15.
(Inset) G

^ðQÞ and a parabolic fit shown as a dashed line.
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in conjunction with highly optimized biomolecular simulation
packages should allow researchers to study length and time scales
previously inaccessible without any loss in accuracy. Moreover,
LMF theory can be used with commodity hardware such as graphics
processing units without the need for additional algorithm devel-
opment (37), offering another source of increased efficiency.
The general theoretical framework presented here is not limited

to simple solvation and can be used to determine generic free
energies as a function of an arbitrary order parameter by recasting
more complex processes in the language of solvation (3). Thus, we
expect this theory of solvation to find wide use and significantly
affect free energy computations across molecular science.

Materials and Methods
Simulation Details. All simulations were performed with the DL_POLY 2.18
software package appropriately modified to incorporate the various in-
teraction potentials used throughout this work (38). In the full systems,
electrostatic interactions were evaluated using Ewald summation (17). Un-
less otherwise noted, LJ interactions and the real space part of the electro-
static interactions were truncated at 9 Å. Simulations were performed in the
isobaric-isothermal (constant NPT) ensemble to ensure that the bulk density
far from the solute remains constant across all systems.

Hard Sphere Solvation in an LJ Fluid and Water. Hard spheres were modeled as
the WCA repulsive portion of an integrated, “9-3” LJ potential following
previous work (27). To compute free energies, simulations were performed
with repulsive spheres of varying radii, in increments of ΔRHS = 0.5 Å, where
the radius RHS of the solute is given by the effective hard sphere diameter (7,
27). Free energies were then computed from energy differences between
neighboring RHS values using BAR (27, 39). The LJ fluid was simulated at a state
near liquid–vapor coexistence, T* = 0.85 and P* = 0.022 in reduced units. Water
was described using the SPC/E model, which adequately captures properties
relevant to the description of hydrophobic hydration, including the isothermal
compressibility and surface tension of water. Simulations of the SPC/E model
were performed at T = 300 K and P =0 atm, and the pressure in the GT system
was appropriately corrected to yield the same density as the full system (28, 31).

Colloid Solvation Free Energy Calculations. Solvation free energies of purely
repulsive spheres in the electrolyte solutionwere computed in analogy to those in
water and the LJ fluid. To compute the charging free energy, we vary the charge
on the colloid in increments of ΔQ= 1 and use a “semigrand ensemble” to
maintain the neutrality of the system at each value of Q by varying the number
of coions between simulations performed in the NPT ensemble with T = 298 K
and P = 7.37 atm. We justify this by noting that the colloid charge is neutralized
by the solvent at a distance relatively close to the solute. Thus, the solution far
from the solute can be considered a neutral reservoir, and adding coions when
increasing Q is equivalent to pulling them from this reservoir of constant neu-
trality. The charging free energy was then evaluated using BAR (39). All colloid
simulations were performed with a constant dielectric constant of e= 78.

Derivation of the Far-Field Solvation Free Energy. We derive an exact ex-
pression for the solvation free energy difference in the Grand ensemble
Ω̆ ½ϕ�− Ω̆ R½ϕR�≡ΔΩLMF½ϕR� indicated by the green arrows in Fig. 1. We choose
a path along the cycle where the slowly varying long-ranged portion u1ðrÞ of
the solvent intermolecular potential is linearly coupled by a parameter λ,

uλðrÞ≡u0ðrÞ+ λu1ðrÞ. [16]

The solute–solvent field ϕλðrÞ also has a particular λ dependence to be specified
later, such that when λ= 0, ϕλ =   ϕR and when λ= 1, ϕλ =ϕ. The chemical po-
tential μλ is chosen so that the pure solvent has the same density ρB for all λ.

The grand partition function at a particular value of λ can then be
written as

Ξλ =Tr
n
e−β½HλðRNÞ−Nμλ�o, [17]

where Trf · g≡PN ½N!Λ3N �−1 R dRNf · g indicates the classical trace, Λ is the
usual de Broglie wavelength, and RN ≡ fr1, r2, . . . , rNg is a point in configu-
ration space (40). Here

Hλ

�
RN
�
=Φλ

�
RN
�
+U0

�
RN
�
+ λU1

�
RN
�
, [18]

where U0ðRNÞ and U1ðRNÞ are total energies in configuration RN from the
short- and long-ranged components of the solvent–solvent intermolecular

potentials and ΦλðRNÞ=
P

iϕλðriÞ is the total energy from the solute–
solvent field.

In the following it is useful to rewrite the solute–solvent energy and
chemical potential terms in Eq. 17 using the microscopic configura-
tional density

ρ
�
r;RN

�
≡
XN
i=1

δðr− riÞ [19]

as

Φλ

�
RN
�
−Nμλ =

Z
dr½ϕλðrÞ− μλ�ρ

�
r;RN

�
. [20]

By differentiating the grand free energy −βΩ½ϕλ�≡ lnΞλ with respect to λ, we
immediately obtain a well-known exact result

∂Ω½ϕλ�
∂λ

=
Z

dr
d½ϕλðrÞ− μλ�

dλ
ρλðrÞ

+
1
2

Z
dr
Z

dr′ρð2Þλ ðr, r′Þu1ðjr− r′jÞ.
[21]

Here ρλðrÞ and ρð2Þλ ðr, r′Þ are the singlet and pair distribution functions in the
nonuniform system with coupling parameter λ. We have assumed that
U1ðRNÞ is given by a sum of pairwise interactions as in Eq. 16 and note from
Eqs. 17–20 that

ρλðrÞ= Æρ
�
r;RN

�
æ
λ
= δΩ½ϕλ�=δ½ϕλðrÞ− μλ�. [22]

We now integrate over λ to obtain the free energy difference between the
mimic system at λ= 0 and the full system at λ= 1. Because the singlet den-
sities at the endpoints are supposed to be equal by definition of the LMF, it
is particularly useful to choose the λ dependence of ϕλðrÞ and μλ such that the
singlet density remains unchanged for all λ, ρλðrÞ= ρðrÞ (40, 41). Integrating
Eq. 21 over this special path yields

Ω½ϕ�−ΩR½ϕR�=
Z

drρðrÞ½ϕðrÞ− μ−ϕRðrÞ+ μR�

+
1
2

Z 1

0
dλ
Z

dr
Z

dr′ρð2Þλ ðr, r′Þu1ðjr− r′jÞ.
[23]

Eq. 23 gives the free energy difference associated with the rightmost green
arrow in Fig. 1. The free energy of the remaining green arrow is obtained
when ϕ=ϕR = 0.

Because the solvation free energy is Ω̆ ½ϕ�≡Ω½ϕ�−Ω½ϕ= 0�, we can use
Eq. 23 to write

Ω̆ ½ϕ�− Ω̆ R½ϕR�=−
Z

drρðrÞ½ϕRðrÞ−ϕðrÞ�+
Z

dr½ρðrÞ− ρB�½μR − μ�

+
1
2

Z 1

0
dλ
Z

dr
Z

dr′
h
ρð2Þλ ðr, r′Þ− ρð2ÞB,λðjr− r′jÞ

i
u1ðjr− r′jÞ,

[24]

with ρð2ÞB,λðrÞ the pair distribution function in the pure solvent.
Eq. 24 is an exact formula for the solvation free energy difference corre-

sponding to the green vertical arrows in Fig. 1. However, it may seem too com-
plicated for practical use because it requires exact values of μR and μ and of the
partially coupled nonuniform pair distribution function ρð2Þλ ðr, r′Þ. This in general is
a function of six spatial variables and will vary with λ even though the nonuniform
singlet density does not change along the chosen path.

However, we show here that when LMF theory provides an accurate self-
consistent description of the induced single particle density ρðrÞ and associ-
ated LMF field ϕRðrÞ, we can obtain a very simple and accurate approxima-
tion to Eq. 24 involving only ϕRðrÞ and ρðrÞ. To that end, we note that the
first two terms on the right generate a Legendre transform to the intrinsic
free energy functional F widely used in classic density functional theories
of fluids (11):

F½ρ�≡Ω½ϕ�−
Z

drρðrÞ½ϕðrÞ− μ�. [25]

F is a functional of the conjugate induced density ρðrÞ and by elementary
properties of the Legendre transform we have in analogy to Eq. 22 the
exact result

δF½ρ�=δρðrÞ=−½ϕðrÞ− μ�. [26]

Eq. 24 can then be exactly rewritten (41) as
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F^½ρ�−F^R½ρ�= 1
2

Z 1

0
dλ
Z

dr
Z

dr′
h
ρð2Þλ ðr, r′Þ− ρð2ÞB,λðjr− r′jÞ

i
u1ðjr− r′jÞ. [27]

The free energies in Eq. 27 are all functionals of the common density
ρðrÞ= ρλðrÞ= ρRðrÞ because of the integration path we have chosen.

Using Eq. 26 we can functionally differentiate Eq. 27 to obtain a formally
exact relation between ϕRðrÞ and ϕðrÞ:

ϕRðrÞ=ϕðrÞ+ δ

δρðrÞ×
�
1
2

Z 1

0
dλ
Z

dr
Z

dr′
h
ρð2Þλ ðr, r′Þ− ρð2ÞB,λðjr− r′jÞ

i
u1ðjr− r′jÞ

+
Z

dr½ρðrÞ− ρB�½μR − μ�
�
.

[28]

Herewe havemoved the chemical potentials terms inside the curly braces and
chosen constants so the term inside the braces vanishes for a uniform bulk
system where ϕðrÞ=ϕRðrÞ= 0 and ρðrÞ= ρB.

The LMF Eq. 4, derived independently by an approximate integration of
the first member of the YBG hierarchy of equations relating intermolecular
forces to induced structure (14, 21), gives a separate and often very accurate
relation between ϕRðrÞ and ϕðrÞ. This can be exactly rewritten in a form
analogous to Eq. 28 as

ϕRðrÞ=ϕðrÞ+ δ

δρðrÞ
�
1
2

Z
dr
Z

dr′½ρðrÞ− ρB�½ρðr′Þ− ρB�u1ðjr− r′jÞ
�
, [29]

where constants have again been chosen such that the term in the curly
braces vanishes in the uniform bulk. Using the LMF Eq. 4 the term in braces
can be exactly rewritten as

1
2

Z
dr
Z

dr′½ρðrÞ− ρB�½ρðr′Þ− ρB�u1ðjr− r′jÞ= 1
2

Z
dr½ρðrÞ− ρB�½ϕRðrÞ−ϕðrÞ�.

[30]

Assuming the accuracy of the LMF approximation for ϕRðrÞ and ρðrÞ we now
subtract Eq. 29 from Eq. 28. The potential terms cancel and we can then
formally perform functional integrals over ρðrÞ. Using Eq. 30 we obtain

1
2

Z 1

0
dλ
Z

dr
Z

dr′
h
ρð2Þλ ðr, r′Þ− ρð2ÞB,λðjr− r′jÞ

i
u1ðjr− r′jÞ+

Z
dr½ρðrÞ− ρB�½μR − μ�

=
1
2

Z
dr½ρðrÞ− ρB�½ϕRðrÞ−ϕðrÞ�.

[31]

Thus, when using a properly chosenmimic system, the complicated expression
on the left side of Eq. 31 involving the λ-dependent nonuniform pair dis-
tribution functions and exact values of μ and μR can be very accurately ap-
proximated by the simple expression on the right where only nonuniform
singlet densities and the LMF appear!

The terms on the left side of Eq. 31 are the last two terms in the exact
expression for the solvation free energy in Eq. 24. Thus, it can be accurately
approximated as

Ω̆ ½ϕ�− Ω̆ R½ϕR�=−
Z

drρðrÞ½ϕRðrÞ−ϕðrÞ�+ 1
2

Z
dr  ½ρðrÞ− ρB�½ϕRðrÞ−ϕðrÞ�

=−
1
2

Z
dr  ½ρðrÞ+ ρB�½ϕRðrÞ−ϕðrÞ�,

[32]

which is the basic LMF solvation formula Eq. 11.
Eq. 32 requires the accuracy of the LMF Eq. 4 and exploits its simple mean

field form in the “bottom-up” functional integration that gives the associ-
ated free energy change. This strongly contrasts with the usual treatment of
mean field theory in classic DFT (11). In this “top-down” approach the free
energy itself including constant terms is expressed as a general functional of
the nonuniform density. It then is written as a sum of reference and per-
turbation parts, with the reference part often chosen for convenience as a
hard sphere system for which accurate analytic functionals have been de-
veloped. This initial choice fixes the form of the remaining potential u1

appearing in the perturbation part. A second crude “mean field approxi-
mation” where nonuniform pair distribution functions are replaced by the
product of single particle functions is then typically used to simplify the
perturbation term.

However, this DFT perspective provides no physical insight into what
reference system should be used or when and why the mean field product
approximation would be expected to be accurate. Nevertheless, as noted by
Archer and Evans (42) (AE), when the crude mean field approximation is used
and the associated single particle potential is calculated by functional de-
rivatives as in Eq. 26, one obtains an equation very similar to the LMF Eq. 4.
Indeed, AE assert that the LMF equation “follows directly from the standard
mean-field DFT treatment of attractive forces.”

However, the detailed derivation of the LMF equation from the YBG
hierarchy in ref. 21 and Supporting Information makes no use of the
crude mean field approximation or other concepts from DFT. It shows
that the resulting mean field form and quantitive accuracy requires a well
chosen u1 that remains slowly varying over characteristic nearest-neigh-
bor distances. Satisfying this constraint is particularly problematic when
trying to use DFT for charged and polar systems. As illustrated here, an
accurate short-ranged mimic system must then generally include the
short-ranged parts of the Coulomb interactions as well as the (hard
sphere-like) repulsive core interactions. It seems unlikely that accurate
analytic free energy functionals for such complicated reference systems
can ever be developed.

As emphasized in ref. 21, the LMF equation (and in particular its use here
to obtain solvation free energies) “is not a blind assertion of mean-field
behavior but rather a controlled and accurate approximation, provided that
we choose our mimic system carefully.” See Supporting Information for
further discussion of this important point and a detailed derivation of the
LMF equation.
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Derivation of the LMF Equation and Relation to DFT
For simplicity we consider solvation in a simple one-component
LJ-like system, although these ideas can be readily extended to
Coulomb systems, usingmethods described in ref. 21. LMF theory
and most perturbation approaches based on classic DFT consider
a restricted class of density-matched reference systems, denoted
here by a subscript ~R, with pair potential u0ðrÞ where a special
effective solute field ϕ~RðrÞ is chosen such that the induced
density equals that of the full system (11, 14, 40):

ρ~R

�
r;
�
ϕ~R

��
= ρðr;½ϕ�Þ. [S1]

Here we have explicitly indicated the functional dependence of
the densities on their respective fields, but this will be omitted
in what follows unless needed for clarity. The tilde in ~R empha-
sizes that the value of ϕ~RðrÞ depends strongly on the so-far-
unspecified choice of u0ðrÞ in the reference system.
As would be expected, the utility and accuracy of any simple

perturbation approach requires a well-chosen reference u0ðrÞ. It
is very plausible that such a ϕ~RðrÞ exists for any reasonable
choice of u0ðrÞ, especially when u0ðrÞ captures most of the strong
short-ranged intermolecular forces. However, in principle, one
could even choose a density-matched ideal gas reference system
with u0ðrÞ= 0, as is done in standard DFT approaches (11) to
define the one body and higher-order direct correlation
functions as functional derivatives of the excess free energy
functional.
LMF theory uses the exact YBG hierarchy of equations relating

liquid structure and forces to derive a formally exact equation
satisfied by ϕ~RðrÞ (14, 21). The first equation in the hierarchy for
the full system can be written as

−~∇ ln ρðrÞ= β~∇ϕðrÞ+
Z

dr′ρðr′jrÞβ~∇ uðjr− r′jÞ. [S2]

Here ρðr′jrÞ is the conditional density, the average density at
position r′ given that a particle is at r, and is defined in terms
of the pair distribution function as

ρðr′jrÞ≡ ρð2Þðr, r′Þ
ρðrÞ . [S3]

A key step in deriving the LMF equation is to subtract from Eq.
S2 the analogous YBG equation for a density matched reference
system (14, 21). Using Eq. S1 we find exactly

~∇ϕ~RðrÞ= ~∇ϕðrÞ+
Z

dr′ρðr′jrÞ~∇ uðjr− r′jÞ

−
Z

dr′ρ~Rðr′jrÞ~∇ u0ðjr− r′jÞ. [S4]

This result can be exactly written in a form useful for further anal-
ysis as

~∇ϕ~RðrÞ= ~∇ϕðrÞ+
Z

dr′ρ~Rðr′Þ~∇ u1ðjr− r′jÞ [S5]

+
Z

dr′
�
ρðr′jrÞ− ρ~Rðr′jrÞ

�
~∇ u0ðjr− r′jÞ [S6]

+
Z

dr′½ρðr′jrÞ− ρðr′Þ�~∇ u1ðjr− r′jÞ. [S7]

Eq. S4 formally determines ϕ~RðrÞ for any choice of u0ðrÞ, u1ðrÞ,
and ϕðrÞ. However, because conditional densities that involve
complicated nonuniform pair correlation functions still appear,
it is generally not very useful in practical calculations.
As argued in detail in ref. 21, considerable simplifications arise

when we can choose an optimal separation where the short-
ranged u0ðrÞ has essentially the same strong short-ranged forces
at characteristic nearest-neighbor distances as in the full poten-
tial along with a corresponding u1ðrÞ that is very slowly varying
on that length scale. We call such a special density-matched
reference system a mimic system and denote it by the subscript R.
These common strong forces should generate very similar

features in the conditional densities in both the full and mimic
systems at short length scales where ~∇ u0 is nonzero so it is
plausible that Eq. S6 is small. Similarly the gradient of the slowly
varying u1 in Eq. S7 is small at short distances, precisely the
region where the conditional and singlet densities differ most
from each other. At larger distances, assuming there are no in-
trinsic long-ranged correlations as seen near critical points, and
so on, the conditional and singlet densities approach one another
and the integrand is again small. Thus, in many cases the term S7
is also very small.
To derive the LMF equation we assume both terms can be

neglected. The remaining term S5 can then be integrated exactly.
Imposing the boundary condition that the density reduces to ρB
far from the solute or when ϕ→ 0 then gives the LMF equation
for the mimic system:

ϕRðrÞ=ϕðrÞ+
Z

dr′½ρRðr′Þ− ρB�u1ðjr− r′jÞ. [S8]

The LMF equation has the form of a mean field equation that
self-consistently relates the effective field ϕR to the nonuniform
singlet density it induces. This derivation shows that this simple
form can be expected to be accurate only for a well-chosen
mimic system resulting from a uniformly slowly varying u1.
Strictly speaking the correction terms to the LMF equation ex-
actly vanish only in the artificial “Kac-limit” with an infinitely
slowly varying and long-ranged u1 (43), so the accuracy of LMF
theory in practice for realistic potentials must be carefully as-
sessed. Further analysis and extensions of these ideas will also
likely be needed to describe mixtures of mobile components with
very different core sizes.
Fortunately, experience has shown that LMF theory gives very

accurate results in many cases both for nonuniform LJ fluids with
walls or fixed solutes, and even better results have been found for
charged and polar systems by properly separating the Coulomb
potential. When the accuracy of the LMF equation can be
established, Materials and Methods, Derivation of the Far-Field
Solvation Free Energy in the main text shows that simple and very
accurate approximations for the solvation free energy can then
be found by a “bottom-up” functional integration over the LMF
potential and induced density.
Archer and Evans (42) (AE) have recently argued that DFT

offers an alternate pathway to the LMF equation, asserting that it
“follows directly from the standard mean-field DFT treatment of
attractive forces.” Here we simplify their argument and assess
the validity of this statement.
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The standard DFT perturbation treatment focuses directly on
the intrinsic free energy functional F½ρ� for the full system de-
fined in Eq. 25 of the main text and that of an appropriately
chosen density matched reference system ~R, writing

F½ρ�=F ~R½ρ�+ΔF ~R½ρ�. [S9]

In this “top-down” DFT approach the associated effective po-
tentials and equilibrium correlation functions are then deter-
mined by functional derivatives of Eq. S9 as in Eq. 26 of the
main text.
In practice accurate analytic approximations for F ~R are known

only for an ideal gas or a harshly repulsive hard sphere like
reference system. Optimistically assuming that such an analytic
reference system ~R can be chosen, we now focus on approxi-
mating the perturbation term ΔF ~R½ρ�. As in Eq. 27 of the main
text, this can be exactly written as

ΔF ~R½ρ�=
1
2

Z 1

0
dλ

Z
dr

Z
dr′ρð2Þλ ðr, r′Þu1ðjr− r′jÞ. [S10]

Although some workers have tried to simplify Eq. S10 by replac-
ing the nonuniform pair correlation function by that of a uniform
system at some intermediate or averaged density (44, 45), it is
not clear how this should be chosen in very nonuniform systems
and the results depend strongly on the choice made.
By default, most researchers have used the crude but much

simpler mean field approximation discussed by AE. For any
density-matched reference system ~R where ρðrÞ= ρλðrÞ= ρ~RðrÞ,
this asserts that pair correlations in Eq. S10 can be safely ignored
by approximating

ρð2Þλ ðr, r′Þ≡ ρðrÞρðr′Þgλðr, r′Þ≈ ρ~RðrÞρ~Rðr′Þ. [S11]

Eq. S9 then can be written as

F½ρ�=F ~R½ρ�+
1
2

Z
dr

Z
dr′ρ~RðrÞρ~Rðr′Þu1ðjr− r′jÞ. [S12]

Taking functional derivatives as in Eq. 26 of the main text we
then have

�
ϕ~RðrÞ− μ~R

�
= ½ϕðrÞ− μ�+

Z
dr′ρ~Rðr′Þu1ðjr− r′jÞ. [S13]

When ϕðrÞ=ϕ~RðrÞ= 0, ρ~RðrÞ= ρB and Eq. S13 reduces to the
mean field van der Waals approximation for the bulk chemical
potentials (14):

μ= μ~R + ρB

Z
dr′u1ðjr− r′jÞ. [S14]

Using this in Eq. S13 and taking ~R=R then gives an equation
seemingly equivalent to the LMF Eq. S8, as noted by AE.
Although this and related derivations of an LMF-like equation

may have the “advantage of concision” (46), we consider them
quite misleading from a fundamental point of view. They seem to
link the quantitative success of the LMF equation to the accu-
racy of the crude mean field approximation in S11 or S12.
However, the magnitude and nature of possible errors that this
direct and uncontrolled imposition of a mean field form could
induce both on the free energy itself and on correlation functions
and fields given by functional derivatives of the approximate
form are by no means obvious.
Closely related problems with the use of the crude mean field

approximation are apparent even in the direct derivation of the

LMF equation from the YBG hierarchy. If Eq. S11 is used in the
exact Eqs. S5–S7, the terms involving conditional densities
vanish identically for any density matched reference system ~R
and we seem to arrive at the LMF form for any such reference
system. However, the detailed analysis of those terms shows that
this conclusion can at best be justified only for a properly chosen
mimic system ~R=R and for states without intrinsic long-ranged
correlations.
The LJ fluid represents one of the few cases where the mimic

system can be well approximated by a hard sphere reference
system and almost all quantitatively successful applications of the
mean field approximation in DFT have been for the LJ fluid.
However, it seems highly implausible even for the LJ fluid with a
near-optimal WCA choice of reference system that the crude
mean field approximation in Eq. S12 could accurately reproduce
the exact free energy in Eq. S10 over a wide range of densities.
This is immediately clear for a uniform fluid where ρðrÞ= ρB.

Then Eq. S9 reduces to the usual Helmholtz free energy F and
Eq. S10 gives the exact uniform fluid perturbation expression for
ΔF0 involving integration over ρ2BgλðrÞ. This equation played a
key role in the development of the WCA perturbation theory for
uniform fluids (7), where ρ2BgλðrÞ was replaced in Eq. S10 by its
value at λ= 0,   ρ2Bg0ðrÞ. This can give quite accurate results for
ΔF0 at high densities with the WCA separation.
This approximation can be motivated by mean field ideas

applied to structure and forces, where the net effects of the long-
ranged attractive forces from u1 on gλðrÞ in typical configurations
in a uniform LJ fluid can be argued to cancel to a good ap-
proximation (6, 7). LMF theory can be used to improve on this
approximation for uniform fluids and extend these ideas to
nonuniform fluids. However, direct use of the crude mean field
approximation on the level of free energies essentially assumes
there exists a generally accurate constant value of the back-
ground potential (the van der Waals “a” term) and attempts to
determine its value while ignoring even g0 correlations. Indeed
when ρ2BgλðrÞ is replaced by only by ρ2B in Eq. S10, quantitative
errors (14) ranging from 10 to 15 percent for ΔF0 are found.
There are similar errors of this magnitude for the van der Waals
mean field expression for the chemical potential in Eq. S14.
LMF theory shows how and why the LMF equation and natural

generalizations to Coulomb systems can nevertheless be used to
give quantitatively accurate results for the structure induced by
the solute and for the excess solvation thermodynamics both for
the nonuniform LJ fluid and for a wide variety of charged and
polar systems as well. However, its success in this particular
context should not be taken as evidence for the more general
validity of S11 or S12.

Solvation in the Mimic System
To determine the solvation free energy in the mimic system,
Ω̆R½ϕR�, we take advantage of the separation of interactions
suggested by Eq. 9 of the main text. Thus, we write

Ω̆R½ϕR�= Ω̆0½ϕ0�+ΔΩR1½ϕR1�, [S15]

where Ω̆0½ϕ0� is the free energy of solvating a purely short-ranged
solute with known potential ϕ0ðrÞ in the SC system, and
ΔΩR1½ϕR1� is the free energy of turning on the LMF correction
ϕR1ðrÞ, as illustrated in Fig. S1. The free energy Ω̆0 can be de-
termined through conventional means such as alchemical or um-
brella sampling techniques (3) and in general will require
multiple intermediate states, as suggested by the red arrow in
Fig. S1.
The slowly varying nature of ϕR1ðrÞ over molecular length

scales leads one to anticipate that its contribution to the total
energy will follow Gaussian statistics to a good approximation.
When this holds, ΔΩR1 is accurately given by (3)
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ΔΩR1½ϕR1�≈
1
2

Z
dr½ρRðrÞ+ ρ0ðrÞ�ϕR1ðrÞ. [S16]

We find that the distributions of the slowly varying portion of the
renormalized field are indeed remarkably Gaussian for all systems
studied here; in special cases where these Gaussians do not over-
lap sufficiently, intermediate states can be used to ensure accuracy
(3). Thus, Eq. S16 provides a simple and accurate estimate of
ΔΩR1, emphasized by the green arrow in Fig. S1.
Similar statements hold in the context of electrostatic inter-

actions, enabling the estimation of the corresponding free energy
due to turning on VR1ðrÞ=VRðrÞ−V0ðrÞ within the Gaussian
approximation,

ΔΩR1½VR1�≈ 1
2

Z
dr
�
ρqRðrÞ+ ρq0ðrÞ

�VR1ðrÞ. [S17]

Numerically Practical Form of the Long-Ranged Contribution
to the Solvation Free Energy
There exists a cancellation of terms between the solvation free
energy of the mimic system and Eq. 11 of the main text, clearly
observed when using Eq. S16. Although the separation of free
energy contributions in this manner is favorable for physical in-
terpretation, such cancellations can lead to numerical inaccuracies
in some contexts. To avoid such inaccuracies, we can combine Eq.
S16 with Eq. 11 of the main text to obtain a useful expression for
the total long-ranged component of the solvation free energy,
Ω̆1½ϕR1�= Ω̆ ½ϕ�− Ω̆0½ϕ0�:

Ω̆1 =
1
2

Z
dr½ρðrÞ+ ρ0ðrÞ�ϕ1ðrÞ

+
1
2

Z
dr½ρ0ðrÞ− ρB�½ϕRðrÞ−ϕðrÞ�,

[S18]

where ρ0ðrÞ is the nonuniform density in the SC reference sys-
tem. Eq. S18 removes the cancelling terms and thus is numerically
advantageous when the Gaussian approximation is accurate.
For completeness, we note that the electrostatic analog of Eq.

S18 can be readily obtained by substituting charge densities for
densities, as is done in ref. 21 for the LMF equation. This leads to

Ω̆1½VR�= 1
2

Z
dr
�
ρqðrÞ+ ρq0ðrÞ

�V1ðrÞ+ 1
2

Z
drρq0ðrÞ½VRðrÞ−VðrÞ�,

[S19]

where ρq0ðrÞ is the charge density in the electrostatic SC system
defined by the strong coupling solute field V0ðrÞ.
Linear Response Theory for the Charge Density
In this section, we briefly review the linear response formalism of
Hu and Weeks (26) for determining the charge density of the
mimic system directly from a system with some effective slowly
varying electrostatic potential ~VR1ðrÞ. The SC system corre-
sponds to ~VR1ðrÞ= 0, whereas the mimic system is obtained when
~VR1ðrÞ=VR1ðrÞ. We first define the potential energy due to
~VR1ðrÞ in a configuration R as

ΦR1
�
R
�
≡

XN
i=1

qi~VR1ðriÞ [S20]

=
Z

drρq
�
r;R

�
~VR1ðrÞ, [S21]

where N is the number of charges in the system and ρqðr;RÞ=PN
i=1qiδðr− riðRÞÞ is the instantaneous charge density.

We now determine ρqRðrÞ= hρqðr;RÞiVR1
, the charge density in

the mimic system, from configurations obtained in the presence
of ~VR1ðrÞ. Typical density response theory estimates involve
difficult and highly fluctuating averages over exponentials. Hu
and Weeks (26) overcome this difficulty through the linear re-
sponse estimate�

ρq
�
r;R

��
VR1

’ �
ρq
�
r;R

��
~VR1

− β
�
δρq

�
r;R

�
δΦR1

�
R
��

~VR1
.

[S22]

Here,

δρq
�
r;R

�
≡ ρq

�
r;R

�
−
�
ρq
�
r;R

��
~VR1

[S23]

and

δΦR1
�
R
�
≡ΦR1

�
R
�
−
�
ΦR1

�
R
��

~VR1
[S24]

are deviations in the charge density and net potential energy due
to ~VR1 from their respective means.
The charge density around a repulsive sphere with radius

RHS = 12 Å is shown in Fig. S2A for the full, GT, and mimic
(LMF) systems. The charge density in the mimic system was
determined using Eq. S22 with ~VR1ðrÞ= 0; that is, ρqðrÞ was de-
termined by using linear response theory on the configurations
of the GT system whose charge density is also shown in Fig. S2A.
The formalism of Hu and Weeks (26) corrects the charge density
of the GT system with quantitative accuracy, bringing it into
good agreement with that of the full system. The LMF potential
VR1ðrÞ obtained in this manner is also shown in Fig. S2B.

Debye–Hückel Approximation for the LMF Free Energy
Contribution to Colloid Solvation
The electrostatic LMF contribution to the solvation free energy is

βΔΩLMF½VR�=−
β

2

Z
drρqðrÞ½VRðrÞ−VðrÞ�. [S25]

The bracketed term corresponds to the renormalized portion of
the LMF from solvent–solvent interactions,

VSðrÞ≡VRðrÞ−VðrÞ= 1
e

Z
dr′ρqðr′Þv1ðjr− r′jÞ. [S26]

To proceed with our calculation, it is natural to transform to Four-
ier space. Using Parseval’s theorem, the LMF term can be writ-
ten as

βΔΩLMF½VR�=−
β

2
1

ð2πÞ3
Z

dkρ̂qðkÞcVSðkÞ, [S27]

where

cVSðkÞ= 4π
ek2

e−k
2σ2=4ρ̂qðkÞ. [S28]

Previous work has illustrated that simple approximations such as
Debye–Hückel theory can be used to approximate the charge
density in the LMF equation with great success (35). Such
theories accurately describe the asymptotic behavior of charged
systems, as described by the Stillinger–Lovett zeroth and second
moment conditions (34, 35). Because LMF theory focuses on
long-ranged, slowly varying interactions, structure (35) and ther-
modynamics (31) can be obtained with only an accurate descrip-
tion of the asymptotic behavior of the system. Therefore, we
expect that a Debye–Hückel approximation to the charge density
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will at least describe the qualitative behavior of the LMF contri-
bution to the free energy.
The charge density of solvent ions can be written using Debye–

Hückel theory as (35)

ρqDðrÞ=−
Q

4πλ2D

eReff=λD

1+Reff
�
λD

e−r=λD

r
,   R>Reff [S29]

and ρqDðrÞ= 0 otherwise, where Reff is the effective radius of the
colloid described in the main text, the Debye screening length is
defined as

λD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e

β
�
ρ+q2+ + ρ−q2−

�r
, [S30]

and ρ± and q± are the density and charge of counter (+) or
coions (−), respectively. Because we are concerned only with
the long-ranged behavior of the solvent, we expect that a good
description of the thermodynamics can be obtained by consider-
ing the asymptotic behavior ρqDðrÞ. Thus, we expand the Fourier
transform of the Debye–Hückel charge density to second order as

ρ̂qDðkÞ∼ ρ̂ð0ÞqD + k2ρ̂ð2ÞqD . [S31]

Here, the zeroth moment is given by

ρ̂ð0ÞqD = 4π
Z ∞

Reff

drr2ρqDðrÞ=−Q, [S32]

which is just a restatement of the electroneutrality of the system.
Similarly, the second moment of the charge density is

ρ̂ð2ÞqD =−
4π
6

Z ∞

Reff

drr4ρqDðrÞ=Qλ2DC, [S33]

where

C≡



1+

�
R
λD

�
+ 1

2

�
R
λD

�2
+ 1

6

�
R
λD

�3�

1+
�
R
λD

� , [S34]

and the well-known form of the second moment relation is recov-
ered when R=λD � 1, such that C≈ 1. Note that for the case in
the main text, R= 30 Å and λD = 26.8 Å, such that R=λD is of
order unity, and we therefore expect the following approxima-
tions for the free energy in terms of the moments of the charge
density to only be of qualitative accuracy.
Using the approximation in Eq. S31 for the charge density, the

LMF free energy can be written as

βΔGLMF =−
4πβQ2

2eð2πÞ3
Z

dk
e−k

2σ2=4

k2
�
1− 2k2λ2DC+ k4λ4DC

2�
[S35]

≡ βΔGð0Þ
LMF + βΔGð2Þ

LMF, [S36]

such that ΔGð0Þ
LMF and ΔGð2Þ

LMF are the components of the free
energy due to the zeroth and second moments of the charge
density. The integrations can be readily performed, yielding

βΔGð0Þ
LMF =−

βQ2

eσ
ffiffiffi
π

p , [S37]

βΔGð2Þ
LMF =

4βQ2

eσ
ffiffiffi
π

p
�
λD
σ

2

C−
12βQ2

eσ
ffiffiffi
π

p
�
λD
σ

4

C2, [S38]

such that the total LMF free energy is

βΔGLMF =−
βQ2

eσ
ffiffiffi
π

p
"
1− 4

�
λD
σ

2

C+ 12
�
λD
σ

4

C2

#
. [S39]

The contributions to ΔGLMF are compared with simulation re-
sults in Fig. S3. Clearly, Eq. S39 provides a qualitative descrip-
tion of ΔGLMF that is improved by including higher moments of
ρqD; however, many higher-order terms in the moment expansion
are needed to approach quantitative accuracy.

Ion Hydration
We now consider ion hydration as an example where the system
has a net charge and long-ranged electrostatics play a significant
role in solvation thermodynamics. Traditional approaches to ion
solvation, such as the successful formalism developed by Hummer
et al. (36), involve the simulation of a single ion in a dielectric
solvent. The electrostatics are treated by Ewald summation in
these systems and therefore require the presence of a neutralizing
background charge density. In addition, significant finite size
effects due to the periodicity of the Ewald sum are present (20),
although successful finite-size corrections to the solvation free
energy have been developed (21, 36, 47).
LMF theory provides a useful alternative to periodic lattice

summation techniques when studying ion solvation. Aside from
the efficient simulation of purely short-ranged systems afforded
by LMF theory, the conceptual difficulties associated with a
nonuniform effective electrostatic potential that depends on the
size of the simulation cell can be eliminated. By using the iteration
scheme in the following section, the LMF potential will display
the asymptotic behavior predicted by classic electrostatics, Q=er
for large r.
Following Hummer et al. (36), we consider the calculation of

the solvation free energy of a charged methane-like particle in
SPC water. In this case, methane is modeled in the united atom
scheme, such that methane (Me) is represented as a single
LJ particle with Me–water interaction parameters of «Me−O

LJ =
0.893228 kJ/mol and σMe−O

LJ = 3.44778 Å. We consider a cat-
ionic state of this particle, with charge Q=+1. Care is needed to
ensure the proper asymptotic behavior of the system when
solving the LMF equation for electrostatics, and we use the pro-
cedure described in the next section to solve the LMF equation for
nonneutral systems.
We separate the solvation free energy Ğ of the positively

charged methane ion following LMF theory:

G˘ =G˘ 0 +ΔGR1 +ΔGLMF. [S40]

The first term in Eq. S40 is the solvation free energy of the ion in
the SCA system. This can be divided into a free energy of in-
serting an uncharged cavity into the GT variant of SPC water,
Ğcav, and a free energy of turning on the near-field portion of the
ion charge, ΔGQ0, such that Ğ0 = Ğcav +ΔGQ0. The free energy
of inserting the ion core can be readily determined by Widom
particle insertion (3, 10), and here we used the value determined
by Hummer et al. (36), Ğcav = 10.2 kJ/mol. This is equivalent to
the value obtained for solvation in GT water to a good approx-
imation, because the local structure and small-scale density fluc-
tuations of the full water model are accurately described by the
SC (GT) system (27, 28). The free energy of the near-field charg-
ing process was then determined by performing simulations of
charged states Q= 0, 0.25, 0.5, 0.75, and 1.0 and calculating
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the free energy as a function of Q using the Bennett acceptance
ratio (39).
The hydration free energy of a methane-like cation in SPC

water determined from LMF theory-based free energy calcula-
tions is compared with the results of ref. 36 in Table S1. The total
solvation free energy Ğ listed there is corrected for finite system
size by the addition of ΔGFS =Q2ξð1− 1=eÞ=ð2LÞ, where ξ=−2.38
for a cubic simulation cell (36). The results obtained from the
LMF theory compare well with the solvation free energies ob-
tained in previous work (36). It is important to emphasize that
the accurate LMF ion hydration free energies are obtained from
relatively simple simulations of purely short-ranged systems and
the many difficulties associated with traditional approaches to
ion solvation using Ewald summation are avoided. The only es-
sential correction to the free energy is simply to account for the
finite size of the simulation cell.

Stable Iteration of the LMF Equation for Charged Systems
In this section we detail a stable iteration scheme for self-con-
sistently solving the LMF equation when the system has a net
charge.We consider here an ion with a point chargeQδðrÞ fixed at
the origin in SPC/E water. We accomplish this by introducing a
second smoothing length, which additionally separates the long-
ranged portion of the LMF potential into an intermediate and a
final long-ranged component, whose limiting asymptotic form is
known from classic electrostatics and can be approximated an-
alytically. The intermediate ranged component of the potential is
obtained self-consistently by a stable iteration method that en-
sures consistency with the known asymptotic form. In this section
we will explicitly indicate the values of the Gaussian smoothing
length for clarity.
We first separate the electrostatic LMF VRðrÞ in Eq. 8 in the

main text into short- and long-ranged components (21) according to

VRðrÞ=V0ðrÞ+VR1ðrÞ, [S41]

where

V0ðrÞ=
Z

dr′ρQðr′Þv0ðjr− r′j; σÞ [S42]

is the short-ranged component of the ion potential and VR1ðrÞ is
the slowly varying portion of the total renormalized potential,
given by

VR1ðrÞ=
Z

dr′
�
ρqRðr′Þ+ ρQðr′Þ�v1ðjr− r′j; σÞ

=
Z

dr′ρqσR,totðr′Þ
1

jr− r′j.
[S43]

Here ρqRðrÞ and ρqσR ðrÞ are the bare and Gaussian smoothed
charge densities of the mobile solvent, and ρQðrÞ=QδðrÞ and
ρQσðrÞ=QρGðr; σÞ are the bare and Gaussian smoothed charge
densities of the ion, where ρGðr; σÞ= σ−3π−3=2expð−r2=σ2Þ.
Eq. S43 shows that VR1ðrÞ is the electrostatic potential arising
from Gaussian smoothing of the total charge density ρqR,totðrÞ=
ρqRðrÞ+ ρQðrÞ.
Classic electrostatics tells us that the asymptotic form of the

polarization potential

ΦpolðrÞ=
Z

dr′ρqR,totðr′Þ
1

jr− r′j [S44]

induced by the ion is given by Q=er independent of the nature of
the ion core, where e is the known dielectric constant of the
solvent (SPC/E water). We can generate this asymptotic form
by approximating

ρqR,totðr′Þ∼
Q
e
δðr′Þ [S45]

in Eq. S44, consistent with the idea of water as a linear dielectric
medium that screens all but a fraction Q=e of the bare ion charge
at large distances.
Eqs. S41–S43 show that VR1ðrÞ has exactly the same asymptotic

form as ΦpolðrÞ and we will exploit this in the self-consistent so-
lution of Eq. S43. To that end we treat VR1ðrÞ as the total elec-
trostatic potential in a new (σ-smoothed) system, and use LMF
theory to map this system onto a new mimic system with an ad-
ditional smoothing length l. This mapping separates VR1ðrÞ into
intermediate- and long-ranged components VR1ðrÞ=VA

R1ðrÞ+
VB
R1ðrÞ. The long-ranged component VB

R1ðrÞ is

VB
R1ðrÞ=

Z
dr′ρqσR,totðr′Þv1ðjr− r′j; lÞ [S46]

=
Z

dr′ρqR,totðr′Þv1ðjr− r′j; σlÞ, [S47]

where

σl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 + σ2

p
. [S48]

To derive Eq. S47 we combined the Gaussian convolutions in the
definitions of ρqσR,tot and v1 in Eq. S46.
We now choose l sufficiently large that we can use Eq. S45 to

accurately approximate the charge density in Eq. S47. This gives
a simple analytic expression for the final long-ranged component

VB
R1ðrÞ≈

Q
e
v1ðr; σlÞ, [S49]

such that VB
R1ðrÞ→Q=er as r→∞, which is the desired asymp-

totic behavior. In practice, we find that values of l on the order of
σ suffice for this approximation to hold, and the results pre-
sented herein were obtained with l= σ.
This stable iteration scheme for systems with a net charge

requires the self-consistent solution of the intermediate-ranged
portion of the renormalized field

VA
R1ðrÞ=

Z
dr′

�
ρqσR ðr′Þ+QρGðr′; σÞ

�
v0ðjr− r′j; lÞ [S50]

from simulation data; there are no numerical problems at large
distances here because of the cutoff from v0ðjr− r′j; lÞ. The re-
maining long-ranged, slowly varying component VB

R1ðrÞ is ap-
proximated by Eq. S49 at each iteration.
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Fig. S1. Schematic illustration of the decomposition of the mimic system solvation free energy, Ω̆ R, into the solvation free energy of the SCA system, Ω̆ 0, and
the free energy of turning on the slowly varying portion of the LMF, ΔΩR1.

(a)

(b)

Fig. S2. (A) Charge density of water around a purely repulsive sphere with an effective hard sphere diameter of RHS = 12 Å. The LMF charge density was
determined using Eq. S22. (B) For completeness, we also show the electrostatic LMF VRðrÞ that gives rise to the LMF charge density in A. Note that in this case
the solute has no charge, VðrÞ= 0, such that VRðrÞ arises solely from solvent–solvent interactions via renormalization.

Fig. S3. LMF contribution to the colloid solvation free energy and two approximations to the free energy obtained from the first and second moments of the
Debye charge density.

Table S1. Contributions to the ion solvation free energy (kJ/
mol)

G
^

Q0 ΔGR1 ΔGLMF G
^

Hummer et al. (36)

−73 −63 −58 −244 −240
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