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Abstract
The response of polar solvents to ions and polar molecules dictates many fundamental molec-
ular processes. To understand such electrostatically-driven solvation processes, one ideally
would probe the dielectric response of a solvent to an idealized point test charge or dipole
solute, as envisioned in classic continuum treatments of the problem. However, this is diffi-
cult in simulations using standard atomically-detailed solvent models with embedded point
charges due to possible overlap with the test charge that lead to singular interaction energies.
This problem is traditionally avoided for a realistic charged solute by introducing an excluded
volume core that shields its embedded point charge or dipole from the charges in the solvent.
However, this core introduces additional molecular-scale perturbations of the solvent den-
sity that complicate the interpretation of solvent dielectric response. In this work, we avoid
these complications through the use of Gaussian-smoothed test charges and dipoles. Gaus-
sian charges and dipoles can be readily inserted anywhere into an atomistic solvent model
without encountering infinite energies. If theGaussian-smoothing is on the scale ofmolecular
correlations in the solvent, both the thermodynamic and dynamic solvation response is linear.
Using this observation, we construct accurate predictive theories for solvation free energies
and solvation dynamics for insertion of Gaussian charges and dipoles in polar solvents and
demonstrate the accuracy of the theories for a widely-used model of water. Our results sug-
gest that Gaussian test charge distributions can be used as an informative probe of dielectric
response in molecular models, and our theories can be used to analytically predict the largest
component of solvation free energies of charged and polar solutes.
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1 Introduction

Solvation of charged and polar molecules is of fundamental importance to a wide range
of processes in the chemical, materials, and biological sciences [1]. The thermodynamics
of solvation determines whether or not dissolved molecules self-assemble and/or adsorb to
interfaces, for example. The dynamic response of a solvent to chemical transformations, such
as electron transfer reactions or electronic excitations, can promote or hinder chemical reac-
tions [2–7]. Thus, understanding the molecular-scale details underlying the thermodynamics
and dynamics of solvation is of critical importance to solution-phase chemistry and signif-
icant effort has focused on developing theoretical models of these processes. In this work,
we revisit the development of simple theories of solvation thermodynamics and dynamics in
polar liquid solvents.

The central quantity in the thermodynamics of solvation is the solvation free energy,
which quantifies how favorable (or unfavorable) a solute is accommodated by a solvent.
Classic models of ionic and polar solvation are rooted in dielectric continuum theory. In the
simplest approximation, one imagines that the polar solvent is a uniform featureless dielectric
medium with dielectric constant ε. To probe the dielectric response, an approximation to the
charged solute is then inserted into the uniform dielectric solvent. However one cannot simply
insert an idealized point test charge or dipole directly into the dielectric because the insertion
energy tends to infinity due to the singularity in the Coulomb potential as r → 0. To avoid
this issue, classic approaches introduce the concept of an idealized solute core, a (often
spherical) boundary inside of which there is no dielectric solvent, while outside there is still
the unperturbed uniform dielectric. By introducing this boundary condition, the energy and
free energy are finite and can be evaluated at the level of dielectric continuum theory, although
the physical interpretation of this boundary is not well understood.

The most well-known versions of these dielectric continuum theory-based solvation mod-
els are the Born and Bell models [8,9], achieved by placing a point charge (monopole) or
point dipole inside a spherical solute core, and this class of models can be easily general-
ized to insert any multipole (or set of multipoles) inside the cavity. While the Born and Bell
models can reproduce the correct magnitude of solvation free energies with reasonable core
sizes (even when neglecting the free energy required to create the solute core), the absence
of solvent structuring at the solute core boundary can lead to qualitative inaccuracies when
comparing to experiment.

These inaccuracies arise from non-linear solvent response to a physically realistic solute
model. In water, for example, the Born model predicts ionic solvation free energies that
are symmetric with respect to the charge of the ion, but in reality these free energies are
asymmetric and non-linear with respect to ionic charge for ions of the same size. This non-
linear response is due to the asymmetric interfacial structure induced by the solute core—
water dipoles preferentially orient toward the core even when it is not charged—as well as an
inherent non-linear response associated with inserting a rapidly-varying, harshly repulsive
potential into the solvent.

Previous work has shown that an exact reordering of the solvation process can isolate
the dominant and linear electrostatic component of the solvation free energy, relegating the
non-linear processes involving solute cores to smaller but conceptually important contribu-
tions [10]. This reordering involves three steps: (1) insert aGaussian solute charge distribution
into the solvent, (2) insert the physical uncharged solute core, and (3) shrink the Gaussian
charge distribution to the point multipolar distribution of the solute. Replacing the point mul-
tipoles of the solute by a Gaussian smeared analog in the first step removes the singularity
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as r → 0, accomplishing the same task as creating the solute core in the Born and Bell
models. Choosing the width of the Gaussian to be on the order of molecular correlations,
roughly 3–5 Å in water, ensures that the first step in the process is linear and can be evaluated
analytically. This first step encompasses roughly eighty percent of the total charging free
energy [10]. Moreover, insertion of a Gaussian charge distribution into a charged or polar
solvent enables the isolation of the dielectric response of the solvent independent of any
detailed solute core effects. Thus, Gaussian charge distributions also provide a useful and
sensitive probe of solvent dielectric response, in direct analogy to what one would like to do
with point test charges in classic electrostatics contexts.

Here, we extend this work in two important ways. First, we develop a theory for the
solvation of Gaussian dipoles in polar solvents in analogy to the Bell model. The use of
Gaussian charge distributions ensures the quantitative accuracy of this model for describing
solvation in atomically-detailed solvent models, and we validate this through comparison of
our theory to results from molecular dynamics (MD) simulations.

We then extend the Gaussian solvation models to describe solvation dynamics. Solvation
dynamics refers to the time-dependent response of a solvent to changes in the nature of a
solute [11–19]. Traditionally, solvation dynamics focuses on the solvent response to instan-
taneous changes in a solute charge distribution, physically realized by electronic excitations,
for example. Such charge distributions can be accurately approximated by point charges or
dipoles within physical cores. Traditional approaches to solvation dynamics utilize dielec-
tric theory to interpret results and draw conclusions about the nature of dynamic dielectric
response. However, as noted above in the context of solvation thermodynamics, the presence
of excluded volume cores complicates such interpretations and models because these cores
induce nonlinear responses that are not well-described by dielectric continuum theories. By
using Gaussian charge and dipole distributions, we are able to probe an intrinsic component
of the dielectric response of a model solvent unobscured by the presence of excluded volume
cores. Isolating the dynamic dielectric response in this manner enables the development and
testing of molecular theories for dielectric solvation dynamics without implicit assumptions
of the nature of the solvent response to solute cores. Such theories can then be extended to
systems with cores in a systematic manner.

Indeed, we demonstrate that the solvent responses to molecular scale ionic and dipolar
Gaussian charge distributions are linear. Moreover, we find that the collective dynamics of
the solvent response are well-described by a linear response theory involving the frequency-
dependent dielectric constant, ε(ω). Our work highlights the utility of Gaussian charges as a
modeling tool to understand the intrinsic response of a solvent to electrostatic perturbations.
Extensions of our work to polarizable and ab initio models of water will further test the
accuracy of our theories [20–27]. We anticipate that such extensions could serve as useful
tools to compare the dielectric response of various polarizable and/or ab initio models on an
equal footing.

2 Charging Free Energy of Ionic Solutes

Before discussing the solvation thermodynamics of dipolar solutes in detail, we first sum-
marize previous results [10] regarding the solvation free energy of two idealized models of
charged ionic solutes: a point charge located at the center of a hard sphere excluded volume
core (the Born model) and a Gaussian charge distribution. In both cases, we are concerned
with the free energy change upon introduction of a solute–solventCoulomb interaction,where
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the ionic solute has a net charge of λQ, such that λ is a (linear) coupling parameter that we
can use to ‘turn on’ the charge of the solute. This solute–solvent electrostatic interaction
energy is given by

Ψλ(R̄) =
∫

dr
∫

dr′ ρ
Q
λ (r′)ρq(r; R̄)

|r − r′| , (1)

where

ρq(r; R̄) =
NC∑
i=1

qiδ(r − ri (R̄)) (2)

is the solvent charge density in configuration R̄, the solvent is composed of NC charged
sites located at positions ri (R̄), and ρ

Q
λ (r) is the solute charge density. For a point charge

located at the origin, ρQ
λ (r) = λQδ(r), while for a Gaussian charge distribution of width l

and magnitude Q, ρQ
λ (r) = λQρG(r; l), where

ρG(r; l) = 1

l3π3/2 e
−r2/l2 . (3)

In the limit l → 0, the Gaussian distribution approaches the point charge distribution.
As shown in [10], the charging free energy of turning on the solute charge, ΔGc(Q), can

be exactly obtained through coupling parameter integration as

ΔGc(Q) =
∫ 1

0
dλ

∫
dr

∫
dr′ ρQ(r′)ρq

λ (r)
|r − r′| , (4)

where ρ
q
λ (r) = 〈

ρq(r; R̄)
〉
λ
is the ensemble average of the solvent charge density in state

λ. Typical dielectric continuum theory-based approaches assume that the average solvent
charge density in the absence of a solute charge is zero, ρ

q
0 (r) = 0. This is true for the

case of Gaussian charge insertion into a bulk solvent, but not for the situation where a solute
excluded volume core exists prior to turning on the solute charge; see previous work for more
details [1,10,20,21,28–35]. However, working within this assumption is important to connect
to classic solvation models, e.g. the Born model.

For slowly varying solute charge distributions and within linear response theory, we have
shown in [10] that the induced solvent charge density can be linearly and locally related to
the overlapping solute charge density, effectively canceling all but a fraction 1/ε of the solute
charge:

ρ
q
λ (r) = −

(
1 − 1

ε

)
λρQ(r). (5)

For the idealized linear dielectric solvent of the Born model, Eq. 5 is assumed to hold
exactly for any overlapping solute charge density. In particular for the Born model of ionic
solvation, we can useGauss’s law to replace the central point charge by an overlapping charge
distribution at the Born radius, RB, of the form ρQ(r) = Qδ(r − RB)/4πr2 for r ≥ RB and
0 for r < RB, and the resulting charging free energy from Eqs. 4 and 5 is

ΔGc(Q) = − Q2

2RB

(
1 − 1

ε

)
. (6)

This is the Born model of ion solvation [8,10]. The Born model can reproduce the general
magnitude of ionic solvation free energies, but its neglect of structural and electrostatic effects
that arise from the uncharged excluded volume core results in qualitative and quantitative
inaccuracies. Experimentally-determined and simulated ionic solvation free energies for ions
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with the same size cores are asymmetric with respect to the sign of the ion charge, while the
Born model predicts that ΔGc(Q) = ΔGc(−Q). This asymmetry results from a non-zero
ρ
q
0 (r); the introduction of an uncharged ionic core induces an electrostatic response in the

solvent that must be taken into account. Additional non-linear responses also arise due to the
presence of this harshly repulsive core [10].

For a Gaussian solute charge distribution, defined above, the resulting free energy is

ΔGc(Q; l) = − Q2

l
√
2π

(
1 − 1

ε

)
. (7)

The two model free energies become equivalent in magnitude for a Gaussian of width lB,
where RB = lB

√
π/2. Unlike the charging of a hard sphere, simulation results indicate

that the charging of a Gaussian charge distribution is symmetric with respect to the sign of
the charge and follows linear response theory for values of l that are on the scale of charge-
charge correlations in the solvent (or larger). Thus, the dielectric continuum theory-like linear
response theory for ΔGc(Q) yields accurate quantitative predictions.

In the derivation of the above free energies, as well as those given below, we have, for
simplicity, assumed zero pre-existing solvent charge density arising from hypothetical and/or
structural boundaries, i.e. we consider an infinite solvent [29]. These boundary terms con-
tribute constants of the form Qφ, where φ is a constant potential originating from nonuniform
solvent charge densities at electrostatic boundaries, and only arise for non-neutral systems,
e.g. single-ion solvation free energies. By working in the infinite solvent limit, we omit these
terms without loss of generality, and they can be readily included using the treatment given
elsewhere [29].

3 Charging Free Energy of Dipolar Solutes

As demonstrated above, the solvation thermodynamic properties predicted by dielectric con-
tinuum treatments differ depending on the precise models adopted. In contrast to the Born
model, which inherently ignores nonlinear responses associated with the presence of an
excluded volume solute core, Gaussian test charges provide a testing ground for elucidat-
ing the microscopic origins of linear and nonlinear responses in ion solvation. To extend
this viewpoint to the charging free energy of dipolar solutes, we explore the solvation of
Gaussian-smoothed dipoles within the framework of linear response theory and compare our
results to the classic Bell model, the analog of the Born model for dipolar solutes.

3.1 Bell Model Revisited

Bell introduced the dipolar generalization of the Born model by idealizing a dipolar solute as
a point dipole fixed at the center of a spherical cavity of radius R [9], and we first revisit this
concept before describing its Gaussian analog. We consider a charging process in which the
solute charge is a partially charged point dipole with electrostatic potential vμ

λ (r) = λvμ(r).
Here vμ(r) is the electrostatic potential of a point dipole with a dipole moment along the
z-axis of magnitude μ,

vμ (r) = μ cosϕ

r2
, (8)

andλ is a linear coupling parameter varying between zero and unity.AswithGaussian charges
described above, the charging component of the solvation free energy can be obtained from
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a coupling parameter integration, such that Eq. 4 reduces to

ΔGc (μ) =
∫

drvμ(r)
∫ 1

0
dλρ

q
λ (r). (9)

The overall electrostatic potential due to both the solute charge and the induced solvent
charge density can be obtained by solving Poisson’s equation with the relevant boundary
condition, which gives

vBellλ (r , ϕ) =

⎧⎪⎨
⎪⎩

3

2ε + 1

λμ cosϕ

r2
r > R

λμ cosϕ

r2
− 2 (ε − 1)

2ε + 1

λμr cosϕ

R3 r < R ,
(10)

where ε is the dielectric constant of the solvent and we have assumed µ = μẑ without loss
of generality; the dipole is aligned with the z-axis. The induced solvent charge density ρ

q
λ (r)

distributed over the surface of the cavity is computed by

4πρ
q
λ (r) = −∂vBell

λ

∂r

∣∣∣∣∣
r=R+ε

+ ∂vBell
λ

∂r

∣∣∣∣∣
r=R−ε

(11)

and we obtain

ρ
q
λ (r) = −3λμδ(r − R) cosϕ

2πr3
ε − 1

2ε + 1
. (12)

Since the induced charge density of theBellmodel depends linearly on the coupling parameter
λ, we can integrate out λ and Eq. 9 reduces to

ΔGc (μ) = 1

2

∫
drvμ (r) ρq (r), (13)

where ρq (r) = ρ
q
λ=1 (r) is the induced charge density of the fully coupled solute–solvent

system.
By inserting Eqs. 12 and 8 into Eq. 13, we obtain the charging free energy of the Bell

model

ΔGc (μ) = −3μ2

4π

ε − 1

2ε + 1

∫ 2π

0
dθ

∫ π

0
dϕ cos2 ϕ sin ϕ

∫ ∞

R
dr

δ (r − R)

r3
(14)

= − ε − 1

2ε + 1

μ2

R3 . (15)

Note that the solvent charge density of the Bell model is nonzero only on the surface of
the cavity and is therefore nonlocal as induced from the point dipole, similar to the solvent
charge density of the Born model. This discontinuity in the charge density is a consequence
of applying macroscopic electrostatic treatments to an atomically sharp boundary. Moreover,
the complicated ε dependence of the charging free energy in Eq. 15 is directly inherited from
the ε dependence of the solvent charge density in Eq. 12.

3.2 Gaussian-Smoothed Dipole Model

Slowing-varying charge distributions, such asGaussian test charges, generate spatially slowly
varying electric fields that induce local and linear dielectric responses even in realistic sol-
vents. By careful construction, such slowing-varying charge distributions can be used to
account for long-ranged electrostatic interactions in more complex systems of interest and its
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charging free energy constitutes the dominant component of the total solvation free energy
of a dipolar molecule, for example.

3.2.1 Constructing a Gaussian-Smoothed Dipole

The Gaussian-smoothed dipole, generalized from the Gaussian test charge, is a natural can-
didate for the dipole solute with slowing-varying charge distribution. We can construct a
Gaussian-smoothed dipole from two oppositely charged Gaussian charges of the same width,
l. The electrostatic potential due to a single unitGaussian charge distributionwith a smoothing
length l is

vG (r) = erf (r/l)

r
. (16)

A Gaussian-smoothed dipole can then be realized by placing a Gaussian test charge of
magnitude Q centered at the origin and another Gaussian test charge of magnitude −Q at an
infinitesimal distance−dr from the origin. The potentials arising from each individual charge
distribution are QvG(r) and −QvG(r + dr), respectively. The potential of the composite
Gaussian-smoothed dipole is given by

vGD (r) = −Q{vG (r + dr) − vG (r)} (17)

= −Qdr · ∇vG (r) . (18)

Similar to the limiting case where a point dipole is traditionally constructed from two point
charges [36], the product Qdr defines the dipole moment µ and is kept finite. We may
therefore write the potential of the Gaussian-smoothed dipole with width l as

v
μ
GD (r) = −µ · ∇ erf (r/l)

r
(19)

Assuming, without loss of generality, that µ = μẑ, Eq. 19 can be expressed as

v
μ
GD (r , ϕ) = μ cosϕ

[
erf (r/l)

r2
− 2e−r2/l2

rl
√

π

]
, (20)

which asymptotically approaches the well-known point dipole potential vpoint(r , ϕ) =
μ cosϕ

r2
on length scales greater than l. As illustrated in Fig. 1a, the potential arising from

the Gaussian dipole is slowly varying with sufficiently large l and removes the singularity in
the point dipole potential without requiring the shielding, excluded volume core employed
in the Bell model.

3.2.2 Relation to a Molecular Dipole

A traditional approach to modeling a molecular dipole is to place two point charges of
magnitude |Q| and opposite sign a distance d apart [36]. The dipole moment of this model
is readily given by μ = Qd , such that the distance d is a lengthscale inherent to the dipole.
A similar lengthscale emerges from our Gaussian smoothed dipole moment.

The charge density distribution of the Gaussian dipole is obtained by applying Poisson’s
equation to Eq. 20,

ρ
μ
GD (r) = μ cosϕ

2re−r2/l2

π3/2l5
. (21)
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(b)(a)

Fig. 1 a Comparison between the radial part of the point dipole potential vpoint and the radial part of the
Gaussian dipole potential vGD for two different values of smoothing length l. In the limit as l → 0, vGD
reduces to vpoint . With greater l, vGD becomes more slowly varying. b Charge density of the Gaussian dipole

(Eq. 21) scaled by the magnitude of its dipole, ρμ
GD(r)/μ, in the xz-plane for fixed y = l, with l = 2 Å. White

dashed lines indicate z = ±√
πl/2, highlighting the upper-bound on the effective distance between the two

charges comprising the dipole given by Eq. 24

By construction, the centers of the two Gaussian charges are infinitesimally separated, but it
can be observed in the contour of the charge density that positive and negative charges are
concentrated at a finite molecular distance from each other, Fig. 1b. To connect to the point
charge dipole model, we define the magnitude of net positive (negative) charge in the upper
(lower) half space by

Qnet =
∫
upper

drρμ
GD (r) = μ

l
√

π
. (22)

The point charge dipole yields Q = μ/d , and comparison of this expression with Eq. 22
defines an effective separation d̄. However, there will be partial cancellation of charges due
to the smearing of the Gaussian charge distributions, i.e. some negative charge leaks into the
upper half space and vice versa, such that

Qnet � Q. (23)

This enables us to place an upper bound on the effective separation between charges in the
Gaussian dipole:

d̄ � l
√

π. (24)

This bound is shown in Fig. 1b and indeed gives a reasonable approximation to the distance
between the two lobes of the dipole distribution. This result enables comparison between the
Gaussian-smoothed dipole and traditional dipolar solute models composed of two spatially-
separated point charges.

3.2.3 Solvation Free Energy of a Gaussian-Smoothed Dipole

In order to determine the solvation free energy of the Gaussian dipole, we note that its slowly
varying nature, Eq. 21, enables the use of approximations that exploit the local and linear
response of the solvent to the solute.We consider the charging process of a Gaussian dipole in
the dielectric continuum by coupling its potential to a parameter λ varying from 0 to 1, such
that the solute charge density is ρ

λμ
GD (r) = λρ

μ
GD (r). Linear response theory approximates
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Fig. 2 Charging free energy of a Gaussian dipole with μ = 8 D and various values of smoothing length l.
Data points correspond to simulation results and error bars are smaller than the symbol size. The solid line is
the prediction of Eq. 27

the solvent charge density by

ρ
q
λ (r) ≈ −

(
1 − 1

ε

)
ρ

λμ
GD (r) , (25)

such that the dielectric continuum screens the solute charges by a fraction (1 − 1/ε). Again,
assuming no pre-existing solvent charge density in this model, the charging free energy can
be computed with a form analogous to Eq. 9,

ΔGc (μ) =
∫

drvμ
GD (r)

∫ 1

0
dλρ

q
λ (r). (26)

By inserting Eqs. 19 and 25 into Eq. 26, we obtain

ΔGc (μ) = −
(
1 − 1

ε

)
μ2

3
√
2πl3

. (27)

In the regimewhere linear response theory holds, e.g. for a Gaussian dipole withmoment 8D,
this corresponds to a width of l ≥ 3 Å, the free energy computed from molecular dynamics
(MD) simulations agrees well with the above continuum theory, as shown in Fig. 2. The
magnitude of the dipole moment, 8 D, is roughly the change in the dipole moment upon
electronic excitation of coumarin 153, one of the most widely used probe molecules in
experimental solvation dynamics studies [14].

To compare the charging free energy of the Gaussian dipole with that of the Bell model
Eq. 15, we write Eq. 27 in an alternative form

ΔGc (μ) = −
(

ε − 1

2ε

)
μ2

[
(9π/2)1/6 l

]3 . (28)

The solvation free energies of the two models are first different by a factor of 2ε+1
2ε . This

factor approaches 3
2 in the limit of vacuum, while it approaches unity for solvents with large
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dielectric constants such as water. The origin of 2ε+1
2ε is the different dielectric continuum

treatments applied to the twomodels. In theGaussian dipolemodel, the linear response theory
approximation that we adopted is consistent with dielectric continuum screening arguments,
which leads to the same ε dependence as models of ion solvation. This is also expected
according to the superposition principle of electrostatics, given that the Gaussian dipole is
made of two Gaussian charges. In contrast, as mentioned above, the ε-dependence of the Bell
model arises from Eq. 12, the singular charge distribution of the solvent. Furthermore, with
different orders of multipole moments, Born- and Bell-like models will generally exhibit
different ε-dependences of the free energy due to the boundary condition imposed by the
excluded volume. In contrast, the Gaussianmodels do not exhibit such amultipole-dependent
ε-dependence.

In cases where the difference due to this ε-dependent prefactor is negligible, the free
energies of the Bell and the Gaussian dipole models become equivalent when the hard-core
radius of the Bell model is equal to

R = l

(
9π

2

) 1
6

. (29)

The solvation free energy of a Gaussian dipole is an important component of the total
solvation free energy of a molecularly-detailed dipolar molecule. This can be seen through
a judicious rewriting of the solvation free energy [10], wherein a Gaussian dipole is first
inserted into the solvent, then the molecular core is inserted, and finally the width of the
Gaussian is decreased to the point dipole limit or morphed into a more detailed molecular
charge distribution. However, unlike a Gaussian charge distribution, a Gaussian dipole can
be completely screened by a dipolar solvent like water, and this complete screening results in
a lower solvation free energy. Despite this point, the free energy of this first step of inserting
the Gaussian dipole is expected to be a significant fraction of the electrostatic contribution
to the solvation free energy, and Eq. 27 provides an accurate analytic expression for this
quantity. This is especially true for small solute molecules, where the free energy of inserting
an excluded volume core is less than or comparable to the free energies in Fig. 2 in the
linear response regime [10]. For large dipolar solutes, such as charge-neutral proteins, the
Gaussian dipole charging free energy will be an important contribution to the total solvation
free energy, although the relative partitioning of the free energy components will depend
sensitively on l, with Eq. 29 yielding l ∼ 1 nm for a small protein [37].

4 Linear Response Theory for Dynamic Response to Gaussian Charges

Solvation dynamics concerns the time evolution of the solvent dielectric response to a time-
dependent change in the solute charge distribution, for example, through creation of an ion or
a change in solute dipole moment through photoexcitation [11,14,18,19]. Classic Born-like
models have therefore been extended to nonequilibrium scenarios to describe the dynamics
of ionic and dipolar solvation, enabling successful predictions for the time scales on which
solvation free energy decays. Here, we focus on extending the Gaussian-smoothed solute
models into this phenomenological nonequilibrium theory, and our approach follows the
framework of linear irreversible processes [38].

We consider turning on the solute charge distribution instantaneously in an equilibrated
bulk solvent. This introduction of the solute charge distribution, ρQ

G (r, t), defines t = 0. We
then focus on how the solvent dynamically responds to the the instantaneous introduction
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of the solute charge and evolves to a new equilibrium state. The dynamical response of the
solvent ismanifest in its charge densityρq (r, t).We can estimate the time-dependent induced
solvent charge density by

ρq (r, t) = −
(
1 − 1

εh

)
ρ
Q
G (r, t) +

∫ t

−∞
dt ′Φ

(
t − t ′

)
ρ
Q
G

(
r, t ′

)
. (30)

The first term in Eq. 30 represents an effectively instantaneous response of the solvent to
the introduction of the solute charge. Physically, this instantaneous response results from a
coarse-graining of high frequency modes of the solvent polarization response, such that the
parameter εh contains the effects of these high frequency modes. The connection of εh to the
frequency-dependent dielectric constant, ε(ω), and its precise value will be discussed inmore
detail below. The second term describes non-Markovian effects due to the time lag of the
polarization of the solvent in response to the time-dependent solute charge distribution, where
Φ

(
t − t ′

)
is the response function of the considered system, which will be determined below.

Because the solute distribution will be turned on instantaneously at t = 0, the integrand is
non-zero only for t ′ > 0, but we use this form for generality. Given that ρeq = 0 due
to neutrality, Eq. 30 follows directly from the standard framework of a linear irreversible
process.

For mathematical convenience, we change the integration variable from t ′ to s = t − t ′
and obtain

ρq (r, t) = −
(
1 − 1

εh

)
ρ
Q
G (r, t) +

∫ ∞

0
ds Φ (s) ρ

Q
G (r, t − s). (31)

Taking the Laplace (one sided Fourier) transform of Eq. 31 yields

ρq(r, ω) = −
(
1 − 1

εh

)
ρ
Q
G (r, ω) + Φ(ω)ρ

Q
G (r, ω), (32)

where Φ(ω) = ∫ ∞
0 dt exp(−iωt)Φ(t). Equation 32 describes the response of the solvent to

a charge distribution harmonically oscillating with frequency ω.
Alternatively, this response can be analyzed by generalizing Eq. 25 to the dynamical

domain as

ρq (r, ω) ≈ −
(
1 − 1

ε (ω)

)
ρ
Q
G (r, ω) , (33)

where ε (ω) is the frequency-dependent dielectric constant. Comparing Eqs. 32 and 33 yields
an expression for the response function

Φ(ω) = 1

ε (ω)
− 1

εh
. (34)

This expression for the response function can be used to described the time-dependence of
the induced solvent charge density according to

ρq(r, t) = −ρ
Q
G (r, t) +

∫ ∞

0
dsρQ

G (r, t − s)L−1
{

1

ε(ω)

}
, (35)

where L−1 { f (ω)} indicates the inverse Laplace transform of f (ω). Equation 35 is the linear
response theory estimate for ρq(r, t) to a time-dependent solute charge density, which we
expect to be valid for a spatially slowly-varying Gaussian charge distribution.
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In this work, we consider turning on a solute charge density instantaneously at t = 0,
such that the time-dependent solute charge density is

ρ
Q
G (r, t) = ρ

Q
G (r)Θ(t), (36)

where Θ(t) is the Heaviside step function, Θ(t) = 0 for t ≤ 0 and Θ(t) = 1 for t > 0.
Under this form of the solute charge density, Eq. 35 becomes

ρq(r, t) = −ρ
Q
G (r)

[
Θ(t) −

∫ ∞

0
dsΘ(t − s)L−1

{
1

ε(ω)

}]
. (37)

In order to further characterize the collective dynamical response of a polar solvent to
the solute charge distribution, we now need to assume an analytic form for ε(ω). In general,
ε(ω) exhibits many timescales encompassing the various types of motion in a polar solvent.
Low frequency modes typically govern the long-time, collective polarization response that
is responsible for dielectric screening of the solute charge. Here, we are concerned mainly
with this low frequency dynamical response and the longer-time solvent relaxation. High
frequency modes include electronic response (absent in point charge models), intertial and
librational motions, and molecular vibrations, as well as any faster collective polarization
fluctuations [13,14,39]. In this work, we coarse-grain out these high frequency modes and
use a description of ε(ω) involving a single-Debye relaxation process [40]

ε(ω) = εh + ε − εh

1 − iωτD
, (38)

where τD ≈ 8 ps is the Debye relaxation time [41], which can be obtained from fitting ε(ω)

or through approximate statistical mechanical models involving rotational diffusion [38].
The static dielectric constant of SPC/E water is ε ≈ 72 [41]. This form of ε(ω) arises from
introducing a frequency cutoff, ωh , such that processes above this frequency are assumed
to occur effectively instantaneously. At the frequency ωh , the Debye process, represented
by the second term in Eq. 38, is no longer the dominant relaxation channel, and ε(ω) ≈
εh for ω > ωh . Fitting ε(ω) to Debye forms yields εh ≈ 4 [42–46]. Higher frequency
motions, such as additional Debye-like relaxation processes and short-time intertial Gaussian
decays [13,14,39,42–46], are well understood and can be readily incorporated into more
complex forms of ε(ω), but this is beyond the scope of the current work.

The inverse Laplace transform of ε−1(ω) can now be evaluated to yield

L−1
{

1

ε(ω)

}
= εh − ε

τDε2h
e−t/τL + δ(t)

εh
, (39)

where τL is the solvent longitudinal relaxation time defined by

τL =
(εh

ε

)
τD. (40)

Finally, upon insertion of Eqs. 39 into 37, we arrive at an expression for the time-dependent
induced solvent charge density,

ρq(r, t) = −
(
1 − 1

ε

)
ρ
Q
G (r)Θ(t) −

(
1

ε
− 1

εh

)
ρ
Q
G (r)e−t/τLΘ(t). (41)

The first term in Eq. 41 corresponds to the equilibrium limit of the solvent response; the
solute charge density is partially screened by the solvent with static dielectric constant ε. The
second term in Eq. 41 interpolates between an effective screening due to the coarse-grained
fast-time response at t = 0+ and the equilibrium limit as t → ∞ on a timescale of τL.
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The thermodynamic evolution of the system is encoded in the time-dependent energy gap,
ΔE(t), where

ΔE(t) = E1(t) − E0(t) = Ψ1(R̄(t)) − Ψ0(R̄(t)) (42)

is the difference in Hamiltonians of the excited (λ = 1) and ground (λ = 0) states at time
t , and Ψλ(R̄) is given by Eq. 1. For the process considered here, there is no solute prior to
insertion, ρQ

0 (r) = 0, such that E0(t) = Ψ0(R̄(t)) = 0, and the energy gap is given by the
solvation energy,

ΔE(t) = Ψ1(R̄(t)) =
∫

dr
∫

dr′ ρ
Q
G (r′, t)ρq(r; R̄(t))

|r − r′| , (43)

Using the solvent charge density given by Eq. 41, we obtain

ΔE(t) = Θ(t)ΔEc(Q; l, ε) + e−t/τLΘ(t)
[
ΔEc(Q; l, εh) − ΔEc(Q; l, ε)] , (44)

where the solvation energy, ΔEc(Q; l, ε) = 2ΔGc(Q; l, ε), is equal to twice the charging
free energy given by Eq. 7 for a Gaussian charge distribution or by Eq. 27 for a Gaussian
dipole, with Q replaced byμ. As with the charge density, the first term in Eq. 44 corresponds
to the equilibrium limit of the solvation energy. The non-trivial time evolution of the energy
is given by the second term, which exponentially interpolates between the energy change due
to fast-time response, via εh , at t = 0+ and the static, equilibrium solvation energy on the
scale of τL.

The time dependence of solvation dynamics is characterized experimentally by the nor-
malized, nonequilibrium time correlation function

S (t) = ΔE (t) − ΔE (∞)

ΔE (0) − ΔE (∞)
, (45)

where t = 0 is the instant when an ion or a dipole is created in the solute. The nonequilibrium
response function S(t) can be measured experimentally using ultrafast spectroscopy, e.g.
time-dependent Stokes shift experiments [13,14,19,47–49]. Thus, S(t) offers the opportunity
to readily bridge theory and experiment to interpret dynamic solvent response at themolecular
scale.Within our theory, this normalized response function can be obtained by insertingEq. 44
into Eq. 45 to yield

S (t) = 1 − 1 − 1
εh

1 − 1
ε

Θ(t) +
1
εh

− 1
ε

1 − 1
ε

(e
− t

τL − 1), t ≥ 0. (46)

This form of S(t) is equal to unity at t = 0 and decays to zero at long times, as expected.
The second term in Eq. 46 corresponds to an effectively instantaneous decay due to high
frequency (ω > ωh) processes. The Debye relaxation is contained in the third term of Eq. 46,
which is a single exponential decay over a timescale of τL. Note that this form of S(t) is
independent of the nature of the Gaussian charge distribution, e.g. S(t) is predicted to be the
same for a Gaussian charge and a Gaussian dipole.

We performed molecular dynamics (MD) simulations of solvation dynamics in the SPC/E
model of water by turning on either a Gaussian charge or a Gaussian dipole at t = 0
and computed S(t) as a nonequilibrium average over many simulation trajectories following
Eq. 45. The resulting nonequilibriumTCFs are shown in Fig. 3 (curves labeledMD). First, one
can see that the two simulated S(t) curves essentially overlap, showing that the response to a
Gaussian charge andGaussian dipole are essentially the same, in agreementwith expectations
from the above theory. At very short times, S(t) rapidly decays from one to about 0.25. This
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Fig. 3 Comparison between S(t) computed from MD simulations (solid line) for a Gaussian charge with
Q = 3e0 and l = 5.6 Å and S(t) described by Eq. 46 (dashed line) with parameters specified in the text. The
exponential curve whose magnitude and rate are determined from the analytical theory can be considered as
the asymptote of the long-time decay in the simulation result. Both plots contain the same data, the right panel
is plotted on a semi-log scale

fast decay is known to follow a Gaussian in time and arises from inertial motion in response
to instantaneous turning on of the solute field [14,39]. Following this initial response, S(t)
exhibits damped oscillations followed by an exponential decay. The coherent oscillations
arise from underdamped, collective solvent motions on intermediate timescales, wherein
solvent molecules initially overpolarize due to the rapid switching on of the solvent and
then overcorrect, with this continuing until the oscillations are damped on a scale of about
0.5 ps [14]. This damped oscillatory decay as well as the initial Gaussian decay process are
high frequencymotions (ω > ωh) and are therefore neglected in the theory for S(t) in Eq. 46.

We also compare the prediction of Eq. 46 with the simulation results in Fig. 3. The
instantaneous drop in S(t) at t = 0+ represented by the second term in Eq. 46 approximates
the effects of all responses with frequencies higher than ωh . This instantaneous drop is then
followed by an exponential decay, described by the third term in Eq. 46. The exponential
decay captures the lower envelope of the response at times less than 0.5 ps, indicating that
the magnitude of the initial drop in S(t) in adequately described by εh . At longer times,
Eq. 46 accurately captures the long-time decay to equilibrium, with the analytic prediction
overlapping with the simulated results, for both the Gaussian charge and dipole. This is
emphasized by the examination of S(t) on a logarithmic scale, highlighting the accuracy of
the long-time solvent response predicted by Eq. 46.

We emphasize that our theory for S(t), Eq. 46, generally applies to any time-dependent
slowly varying charge distribution, like the Gaussian distributions described here. In these
models, solute charges vary slowly over molecular length scales and induce local and linear
responses in the solvent, such that Eq. 33 is valid. For example, Eq. 46 correctly predicts
the same time constant τL for the solvation dynamics of both ionic and dipolar Gaussian-
smoothedmodels, as shown in Fig. 3. This longest time scale for the decay of S(t) is the same
as that derived with the classic Bornmodel for ionic solvation. However, the Bell model leads
to a different time constant for solvation dynamics in response to a dipolar solute composed
of a hard core surrounding a point dipole,

τBellL =
(
2εh + 1

2ε + 1

)
τD . (47)
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Fig. 4 Analytical predictions derived from our linear response theory-based model and the traditional models
with hard cores. The same parameters for the single Debye process are used in all the models. Both plots
contain the same data, the right panel is plotted on a semi-log scale

The difference between τL and τBellL originates from the different ε dependences of the free
energy discussed in Sect. 2. In general, the electrostatic boundary presented by the solute
excluded volume leads to multipole-dependent prefactors in Eq. 47. Moreover, the relative
magnitudes of the short- and long-time responses predicted by hard-core models also differ
depending on the order of the multipole, as shown in Fig. 4. Therefore, hard-core models
lead to non-negligibly different behaviors for the solvation of different multipoles [16], such
that the solvation dynamics involving solutes with hard cores do not involve only the intrinsic
dielectric response of the solvent, but involve a solute dependence as well.

5 Conclusions

Through the examination of the static and dynamic solvation of Gaussian charges and dipoles
in a model of liquid water, we have demonstrated that the intrinsic response of water to
slowly-varying electrostatic perturbations is well-described by linear response theory. The
use of Gaussian-smoothed charge distributions removes the singularity associated with point
charge models at short distances, eliminating the need for an excluded volume solute core.
The presence of such cores has obscured the interpretation of solvent response because the
harshly repulsive cores inherently induce non-linear and asymmetric thermodynamic and
structural response in polar solvents [10]. By avoiding these nonlinearities, we are able to
probe and develop theories for the intrinsic dielectric response of water in the linear regime.

In classic dielectric continuum treatments, the introduction of a solute core creates a bound-
ary condition that can lead to free energies and relaxation times that contain complicated,
multipole-dependent functions of the dielectric constant. In contrast, the solvent response to
boundary-less Gaussian multipolar distributions take on the same dielectric screening form.
This leads to multipole-independent timescales for solvation dynamics, as well as the same
solvent screening contribution to the solvation free energy, i.e. the free energy is a product of a
solvent term (involving ε) and a solute term (involving the magnitude of the solute multipole
moment). The intrinsic solvent response to electrostatic solute perturbations therefore does
not depend on the nature of the solute charge distribution itself beyond its magnitude and
smearing length.
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6 Simulation Details

Our MD simulations are performed with the LAMMPS software package [50], using the
SPC/E water model [51] and 8000 water molecules. Lennard-Jones interactions are cutoff
at 9.8 Å and long-range electrostatic interactions are evaluated using Ewald summation [52]
with a precision of 10−6. The package is modified to include the potentials of a Gaussian
charge and a Gaussian dipole, and the charging free energy is computed by direct summation
following previous work [10,29]. The system evolves in the NPT ensemble realized by a
Nosé-Hoover barostat and thermostat with a timestep of 1.0 fs, such that the temperature and
pressure are maintained at T = 300 K and P = 1 atm [53–57]. The equilibrium free energy
is averaged from 9 trajectories, each monitored for 506 ps following a 20 ps equilibration
between the solute charge and the pre-equilibrated bulk water. The nonequilibrium response
function is averaged from 900 trajectories for the Gaussian charge and 7200 trajectories for
the Gaussian dipole.
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