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ABSTRACT
The quantum many-body problem in condensed phases is often simplified using a quasiparticle description, such as effective mass the-
ory for electron motion in a periodic solid. These approaches are often the basis for understanding many fundamental condensed phase
processes, including the molecular mechanisms underlying solar energy harvesting and photocatalysis. Despite the importance of these
effective particles, there is still a need for computational methods that can explore their behavior on chemically relevant length and time
scales. This is especially true when the interactions between the particles and their environment are important. We introduce an approach
for studying quasiparticles in condensed phases by combining effective mass theory with the path integral treatment of quantum parti-
cles. This framework incorporates the generally anisotropic electronic band structure of materials into path integral simulation schemes
to enable modeling of quasiparticles in quantum confinement, for example. We demonstrate the utility of effective mass path integral
simulations by modeling an exciton in solid potassium chloride and electron trapping by a sulfur vacancy in monolayer molybdenum
disulfide.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0020555., s

Electronic excitations in semiconducting materials form the
foundation of many areas of materials and energy sciences, includ-
ing solar energy harvesting and conversion and nanoelectronics. It
is often advantageous to describe processes involving such excita-
tions within the language of quasiparticles, e.g., electrons and holes
with effective masses or excitons.1–3 Due to the complexity of these
descriptions, the theory and simulation of quasiparticles are often
limited to coarse-grained and continuum approaches or modeling
small, highly symmetric systems in quantum mechanical detail.4–11

While these approaches are responsible for important advances in
our understanding of exciton physics and nanotechnology, it is dif-
ficult for the existing methodologies to describe the sources of dis-
order (defects), and large system sizes are often needed to properly
model the effects of charge carriers on their surroundings and vice
versa.

One promising approach for simulating quantum particles in
complex environments uses the path integral (PI) representation of

quantum mechanics in which a quantum particle, such as an elec-
tron, can be represented as a classical ring polymer. Given pseu-
dopotentials to describe the interactions between a quantum particle
and its (often classical) environment, one can perform molecular
dynamics (MD) simulations of large systems for long times. How-
ever, it is difficult for straightforward PIMD simulations to describe
phenomena such as quantum confinement that manifest as a result
of anisotropic electronic band structures, in addition to quasiparti-
cles such as holes. In this work, we describe an approach that uses
effective mass theory12–17 to incorporate these aspects of anisotropic
electronic band structures of materials into the path integral rep-
resentation of quantum mechanics18–22 in order to model quan-
tum charge carriers and their excited states (e.g., excitons) in com-
plex, atomistic environments. Such an approach can be considered
as an intermediate-scale coarse-graining, which incorporates some
effects of the interactions into the effective masses, leaving simpler
interactions to be described by pseudopotentials. We demonstrate
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the utility of this effective mass path integral (EMPI) approach by
modeling an exciton in crystalline potassium chloride and electron
trapping in a defective monolayer of molybdenum disulfide (MoS2).

We consider a quantum particle described by a Hamiltonian
H = T + V, which consists of a kinetic term, T, and a potential term
describing its interactions with the environment, V. The partition
function for this particle can be written as

Z = ∫ dr1⟨r1∣e−βH∣r1⟩. (1)

By applying the (symmetric) Trotter factorization,18–20,23 we can
write Z in a form that physically corresponds to a discretization of
the (cyclic) quantum path of the particle in imaginary (or Euclidean)
time,

Z = lim
P→∞∫

dr1 ∫ dr2⋯∫ drP

× [⟨r1∣e−βV(r1)/2Pe−βT/Pe−βV(r2)/2P∣r2⟩⋯

× ⟨rP∣e−βV(rP)/2Pe−βT/Pe−βV(r1)/2P∣r1⟩]. (2)

In practice, we use a finite number of discretizations, P, and the par-
tition function and equilibrium ensemble averages are exact in the
limit P → ∞, corresponding to a continuous path. The potential
term, V(r), can be readily evaluated, and so we focus on rewriting
the kinetic part of the partition function. This arises from matrix
elements of the form

⟨ri∣e−βT/P∣rj⟩ = ∫ dp⟨ri∣e−βT/P∣p⟩⟨p∣rj⟩, (3)

which connects each discrete step in the imaginary time path of the
particle, e.g., step i to j.

We now work within effective mass theory (EMT) to include
some aspects of the electronic structure in our model through the
above matrix elements. EMT prescribes an effective mass m∗ to
charge carriers, which reflects the modification of their masses, from
that of a free electron, due to interactions with other charge carri-
ers and the static nuclei.12–16 In order to model quantum particles
in a classical bath using the path integral isomorphism, we substi-
tute the free masses of the quantum particles with those determined
from EMT to include the influence of the electronic response to
the environment in effective classical models. For highly symmet-
ric materials, isotropic parabolic fits of the band structure may be
sufficient such that a scalar effective mass m∗ can be assigned to
the particle.24,25 However, lower symmetry materials require that the
3 × 3 mass-tensor

(
1
m
)
αγ
=

1
h̵2

∂2E(k)
∂kα∂kγ

, α, γ ∈ {x, y, z}, (4)

can be computed, leading to an inverse effective mass-tensorm−1 for
each quantum particle that can, in principle, be anisotropic. Note
that the effective mass-tensor is symmetric, m−1

αγ = m−1
γα . We also

drop the star for notational clarity.
In the context of EMT, the kinetic energy of the quantum

particle is now

T = 1
2
pT
⋅m−1

⋅ p, (5)

which reduces to T = p2
/2m in the limit of an isotropic, diagonal

mass matrix. We can then follow the typical evaluation of the parti-
tion function in the path integral isomorphism, but now with Eq. (5)
for the quantum kinetic energy. The desired matrix element can be
readily evaluated through Gaussian integration26 to yield

⟨ri∣e−βT/P∣rj⟩ = (
P

2πβh̵2)

3/2

det[m−1
]
−1/2

exp
⎧⎪⎪
⎨
⎪⎪⎩

−∑
α,γ

1
2

P
h̵2β

mαγαijγij
⎫⎪⎪
⎬
⎪⎪⎭

,

(6)
where mαγ is the α, γ element of the inverse of the matrix m−1.
With this expression for the matrix elements, the partition function
is given by

Z = lim
P→∞
(

P
2πβh̵2 )

3P/2

det[m−1
]
−P/2
∫ dr1⋯∫ drPe−βHP(r1 ,...,rP),

(7)
where HP is the isomorphic Hamiltonian of a classical ring polymer
with harmonic bonds between neighboring beads of the polymer.
This isomorphic Hamiltonian is

HP(r1, . . . , rP) =
1
P

P

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎣

V(ri) +∑
α,γ

καγ
2
(αi − αj)(γi − γj)

⎤
⎥
⎥
⎥
⎥
⎦

, (8)

where

καγ =
P2mαγ

β2h̵2 , (9)

and the matrix elements mαγ can be determined by inverting m−1.
The harmonic bonds between neighboring beads of the ring polymer
generally are not spherically symmetric but involve different spring
constants, καγ, along each direction, as well as coupling between
the displacements in the Cartesian components, as demonstrated
below.

In the limit of a diagonal m−1, the ring polymer Hamiltonian
becomes

HP(r1, . . . , rP) =
1
P

P

∑
i=1
[V(ri) +

κxx
2
(xi − xj)2 +

κyy
2
(yi − yj)2

+
κzz
2
(zi − zj)2

]. (10)

In this formulation, the harmonic springs between neighboring
beads of the ring polymer do not have spatially isotropic spring con-
stants but are instead given by καα = P2mαα/β2h̵2, where α refers to
a spatial coordinate. This is particularly important in systems with
reduced dimensionality. For example, mzz ≫ mxx ≈ myy in mono-
layer MoS2, as discussed below, resulting in ring polymers that are
confined essentially to two dimensions.

To illustrate a specific case where off-diagonal coupling
is present, we explicitly consider an effective mass-tensor with
m−1

xz = m−1
zx = m−1

yz = m−1
zy = 0; all other elements are non-zero. In

this case,
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HP(r1, . . . , rP) =
1
P

P

∑
i=1
[V(ri) +

κxx
2
(xi − xj)2

+
κyy
2
(yi − yj)2 +

κzz
2
(zi − zj)2

−κxy(xi − xj)(yi − yj)] (11)

with the spring constants

καα =
P2mαα

β2h̵2μxy
(12)

and

κxy =
P2mxxmyy

β2h̵2mxyμxy
, (13)

where μxy = (1 −mxxmyy/mxy
2
). The analogous Hamiltonian when

mxz
−1 or myz

−1 is the only non-zero off-diagonal element can be
readily obtained by permuting the relevant indices in Eq. (10). Inclu-
sion of a single off-diagonal element (xy) in the effective mass-tensor
leads to a coupling between the x- and y-directions. The presence of
the off-diagonal coupling additionally renormalizes the effective xx
and yy spring constants by a factor of μxy. This may be expected from
conservation of energy. Because some of the quantum kinetic energy
is transferred into the coupling between the x- and y-directions, the
xx and yy components of the kinetic energy must be correspondingly
reduced to account for this energy transfer into the additional degree
of freedom. Hence, the contribution from the off-diagonal coupling
is opposite in sign to the diagonal coupling, and the prefactor is twice
the magnitude of that for a single diagonal term (half from xx and
half from yy).

We now demonstrate the utility of our approach in the con-
text of simulating an exciton in an alkali-halide crystal. We model an
electron–hole pair at a constant temperature of T = 300 K, and the
electron and hole ring polymer each have P = 1024 beads. These MD
simulations were performed using the LAMMPS software package27

with Nosé–Hoover chains to maintain a constant temperature28 and
a Parrinello–Rahman barostat to maintain zero pressure,29–31 allow-
ing the crystal to relax to the presence of the exciton. The ring poly-
mers were massively thermostatted to ensure proper sampling.32,33

We use the Tosi–Fumi model for KCl.34 Electrostatic interactions
between charges of the same sign are described with a standard
Coulomb potential, while those between charges of opposite sign
are described by a Shaw pseudopotential,35 with short-ranged cut-
offs of 1.96 Å, 1.75 Å, and 1.69 Å for electron–K+, hole–Cl−, and
electron–hole interactions. The electron–K+ cutoff is that used by
Parrinello and Rahman in their seminal study of F-centers in KCl,36

the hole–Cl− cutoff corresponds to the Cl van der Waals radius, and
the electron–hole cutoff is crudely chosen to yield the bandgap in
the single bead limit; the bandgap is the energy difference between
infinite separation and a perfectly overlapping electron and hole.
Further refinement of the latter cutoff can be performed to match
the exciton binding energy, for example, but we reserve this for
future work, and note that the cutoff used here yields reasonable

predictions. Long-ranged electrostatic interactions were evaluated
using the particle–particle–particle mesh Ewald method.37

Band structure calculations were performed using the GPAW
software package,38 in combination with the atomic simulation envi-
ronment (ASE),39 and employed the PBE density functional approx-
imation40 with a plane-wave cutoff of 1200 eV and a 12 × 12 × 12
k-point mesh. Although the bandgap is not properly described at
this level of theory,41,42 the curvature of the bands near the gap is
likely adequate, and we expect the effective mass for these materi-
als to be somewhat insensitive to the choice of semi-local functional.
Note that high throughput calculations of more complex materials
have also used density functional theory (DFT) effective masses suc-
cessfully in order to correlate transport and other properties from
the predicted band structures.43,44 For highly accurate band struc-
tures and effective masses, approaches beyond semi-local DFT are
required.45–47 Effective masses herein were determined using the
effective mass calculator (EMC) program using a five-point stencil
to evaluate the second derivatives.48 We find that m−1 is approxi-
mately diagonal such that the masses of the electron and hole are
approximately isotropic, mαγ ≈ δαγm∗, and equal to m∗e = 0.45me
and m∗h = 5.2me, respectively, where me is the bare mass of an
electron.

A single exciton introduced into an otherwise perfect alkali-
halide crystal can self-trap and create lattice defects.7,49–54 This
self-trapping results in a structure resembling a closely separated
F-center–H-center pair, where the latter corresponds to a hole bridg-
ing two anions, Cl−2 , and similar states, e.g., Cl2−3 . The self-trapped
exciton is not spherical, as one might expect using continuum theo-
ries of excitons in condensed phases. Instead, the exciton is expected
to be dipolar, with the electron and hole separated by some average
distance Reh > 0 even in the bound, excitonic state.7,51,52

The formation of this self-trapped exciton state in solid KCl
is illustrated by the snapshot in Fig. 1(a). The electron–hole pair
distribution function in Fig. 1(b) demonstrates that the dipolar
exciton consists of an electron and hole separated by Reh ≈ 2
Å. This is further supported by the electron–hole spatial distri-
bution function shown in the inset of Fig. 1(b). This is in very
good agreement with previous interpretations of experiments and
detailed theoretical calculations that also predict a dipolar exciton
with Reh ≈ 2 Å.51

While the light electron is delocalized over many ions (but
localized with respect to a free electron with the same effective
mass), the heavy hole is highly localized and bridges Cl− ions, as
illustrated by the snapshot in Fig. 1(c). The Cl–Cl pair distribution
functions, g(r), of the KCl crystal in the absence and presence of the
exciton are compared in Fig. 1(d), averaged over all Cl− in the sys-
tem. In the presence of the exciton, a peak at close Cl–Cl distances
appears in g(r), consistent with the formation of Cl−2 -like struc-
tures predicted in more detailed quantum calculations and exper-
iments.7,51–53 We additionally note that the hole–anion interaction
potential we employ is spherically symmetric. Including directional-
ity into the hole–anion interactions, e.g., through the use of multisite
ion models,55 for example, may lead to even better descriptions of
H-centers.

The EMPI formalism can also describe the effects of reduced
dimensionality. For example, monolayer transition metal dichalco-
genides, such as MoS2, are two-dimensional materials that exhibit
quantum confinement in the two-dimensional plane of the
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FIG. 1. (a) Snapshot of an electron (blue)–hole (red) pair—an exciton—in solid KCl
from a single configuration of a molecular dynamics simulation. K+ and Cl− ions
are drawn as white and green spheres, respectively. (b) The (bead–bead) pair dis-
tribution function, geh(r), quantifies correlations between the electron and hole in
solid KCl. The inset shows the electron (blue) and hole (red) three-dimensional
spatial distribution function computed in the rotating frame using the vector con-
necting the centroids as the z-axis, indicating the formation of a dipolar exciton.
Solid and transparent isosurfaces are drawn to enclose ∼90% and 98% of the
maximum density, respectively. (c) Simulation snapshot of the hole ring polymer
localized between two chloride ions, forming a Cl−2 anion. (d) Pair distribution func-
tion between chloride ions in a bulk KCl crystal (bulk) and the KCl crystal with
an exciton present (exciton). Note the appearance of a peak at low r due to the
formation of Cl−2 and similar states.

lattice.5,6,56–58 In this case, the effective masses suggest that the
quasiparticles are essentially confined to the xy-plane, mxx = myy
≈ 0.562me ≪ mzz ≈ 960me. The large z-component of the effective
mass-tensor manifests as a high spring constant κzz that confines the
quasiparticle significantly in the z-direction while allowing the parti-
cle to spread in the two-dimensional (xy) plane, as illustrated by the
snapshots in Figs. 2(a) and 2(b). Note that the out-of-plane effective
mass (mzz) will go to infinity as the width of the semiconductor tends
to zero, i.e., a purely two-dimensional system.

We demonstrate the utility of EMPIMD simulations for sys-
tems with reduced dimensionality by studying the binding of an
excess electron in monolayer MoS2 to a sulfur vacancy, which car-
ries an effective positive charge. Monolayer MoS2 is modeled using
the Stillinger–Weber potential designed to capture the structure and
vibrational properties of the monolayer,59,60 which readily enables
modeling of defects. The interactions between the electron and the
S atoms are modeled using a Coulomb potential, and those between
the electron and the Mo atoms are modeled using a Shaw pseudopo-
tential35 with a short-range cutoff of 0.18 Å. The partial charges on
the Mo and S atoms, used for interactions with the electron, are
those from the work of Sresht et al.61 Simulations are performed
using LAMMPS27 with appropriate Nosé–Hoover thermostatting
to maintain a constant temperature of 300 K. The anisotropic
spring constants of the electron ring polymer are incorporated using

PLUMED.62 The electron–S-vacancy potential of mean force is cal-
culated using umbrella sampling63 combined with UWHAM,64,65

where we biased the two-dimensional (xy) distance between the elec-
tron and the location of the vacancy using harmonic potentials in
PLUMED.62

Spatially resolved photoluminescence (PL) spectroscopy has
discovered that excitonic hotspots appear at the location of sulfur
vacancies in monolayer MoS2.66–69 The higher intensity peaks in the
vicinity of sulfur vacancies suggest that excess electrons in doped
MoS2 are bound to these vacancies. Increasing the concentration
of sulfur vacancies results in the appearance of a new, lower energy
peak in the PL spectra, further suggesting the validity of this inter-
pretation. Our EMPIMD simulations further support this picture of
strong electron–S-vacancy interactions in monolayer MoS2, leading
to the formation of a trap state.

To quantify the interactions between the electron and a sulfur
vacancy, the free energy as a function of electron–vacancy distance
is shown in Fig. 2(c). We find a binding free energy of ∼30kBT at
300 K, in agreement with the range of energies predicted by kinetic
modeling of spectroscopic measurements.70 This binding free
energy is also in good agreement with the energy difference between
the trap state and the conduction band predicted by density func-
tional theory (DFT) calculations.71

The scaling of the free energy with distance is in good agree-
ment with that expected for Coulomb interactions within an isolated
two-dimensional (2D) semiconductor,6,72

V2D(d) = −
π

2d0
[H0(

d
d0
) − Y0(

d
d0
)], (14)

where d is the electron–vacancy in-plane distance, H0 is the Struve
function, Y0 is the Bessel function of the second kind, and d0 is a
screening length. We compare V2D(d) with the simulated free ener-
gies in Fig. 2(c) for 30 Å ≤ d0 ≤ 40 Å, as estimated in Ref. 6. We
also show the three-dimensional Coulomb potential V3D(d) = −A/d,
where A was determined by fitting the simulation data from 2.5 Å
to 20 Å. The simulated free energies follow the two-dimensional
scaling, V2D, for all but the smallest electron–vacancy distances and
not V3D, as expected for 2D materials. Note, however, that this
only verifies that the distance scaling of the free energy is consistent
with reduced-dimensionality effects on electrostatics. Quantitative
agreement between simulation results and theoretical predictions6

that account for both the effective charge state of the vacancy and
electronic screening within MoS2 may require inclusion of spatially
varying dielectric constants within the semiconductor in our simu-
lations, as well as a reparameterization of the pseudopotentials for
this environment.

Our approach additionally enables the characterization of the
effects of the sulfur vacancy on the electron. For example, exami-
nation of the imaginary time root mean squared displacement,73,74

R(τ) = ⟨∣rxy(τ) − rxy(0)∣2⟩
1/2

, where rxy indicates that distances in-
plane were considered in the calculation. Comparison of R(τ) for
the trapped electron with that expected for a free electron in MoS2,
Rfree(τ) = [2λ2

(t/βh̵)(1 − t/βh̵)]1/2, where λ2 = βh̵2/m and m = mxx
= myy, indicates that binding to the sulfur vacancy traps the excess
electron, as shown in Fig. 2(d). The value of R(βh̵/2) ≈ 5 Å yields
an estimate for the effective size of the electron in good agreement
with that determined for the trap state from DFT calculations.71
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FIG. 2. Snapshots showing (a) top and (b) side views of an electron (blue surface) in monolayer MoS2 (tan: Mo and yellow: S). (c) Free energy as a function of the electron–
S-vacancy in-plane distance (points). Dashed line and shaded region show three-dimensional and two-dimensional electrostatic interactions, V3D and V2D, respectively. The
inset shows an illustration of the electron–S-vacancy distance, d; the vacancy is shown as a red circle. (d) Imaginary time root mean squared displacement, R(τ), for a free
effective mass electron in two dimensions and simulation results for an electron in a defect-free monolayer (unbound) and bound to the S-vacancy.

Moreover, writing R(τ) in the basis of electronic eigenstates,73,74

R2
(τ) =

4
Z∑n,m

e−βEnx2
nm(1 − e

−τ(Em−En)/̵h), (15)

where we have considered the 2D case assuming x and y are equiv-
alent by symmetry, Z is the partition function, xnm = ⟨n∣x∣m⟩,
and En is the energy of eigenstate n, further suggests that the elec-
tron is in a deep trap state. In order for R(τ) to be indepen-
dent of τ, as is the case for τ ≫ 0, Eq. (15) must be dominated
by a single, localized eigenstate with a significant gap to the first
excited state. This ground state that dominates the behavior of the
vacancy-bound electron is the trap state. In contrast, the spatially
extended states sampled by the free electron correspond to the ther-
mally accessible excited electronic states. As shown in Fig. 2(d),
an “unbound” electron, here obtained by simulating an electron
in a defect-free monolayer, yields R(τ) consistent with that for
a free effective mass electron, with a slight renormalization due
to dynamic electron–phonon coupling. Fitting to Rfree(τ) yields a
heavier in-plane effective mass of m ≈ 0.7me, as expected for elec-
tronic coupling to phononic distortions of the nuclear sites.3 These
results highlight the utility of EMPIMD simulations in quantify-
ing the thermodynamics of quasiparticle interactions in anisotropic
materials.

In this Communication, we have presented a formulation of
effective mass path integral simulations. This approach incorporates
effective mass theory into the path integral description of electrons
and holes for their simulation in condensed phases, extending pre-
vious PI-based methods using scalar effective masses to materials
with anisotropic electronic structures. We expect that this approach
will find wide use in a variety of applications, including the sim-
ulation of exciton and charge carrier structure and dynamics in
materials.

We note that our implementation of EMPIMD simulations
described above has not exploited the many significant advances
made in the context of path integral simulations in recent
years. However, the EMPIMD method is readily amenable to
such approaches, including novel integration schemes,75–78 ther-
mostats,79–81 and nearly all other developments in the context

of path integral and ring-polymer techniques.82–88 Of additional
importance for the future of EMPI models is the development of
accurate electron–environment and hole–environment pseudopo-
tentials, beyond the simplistic, spherically symmetric charge–charge
pseudopotentials used here,89,90 as well as the inclusion of mod-
ified electrostatics due to dielectric screening in low-dimensional
materials.4,6 These effective interaction potentials will impact the
accuracy of the predictions made by EMPI approaches. Finally, we
note that this framework can also be readily used within the ring-
polymer MD approximation and similar approaches23,91–93 to model
the quantum dynamics of quasiparticles in complex environments,
and future work will focus on extending these approaches to EMPI
simulations.
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